Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elizabeth M. Curto x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To compare complications between healthy horses undergoing general anesthesia for ophthalmic versus non-ophthalmic procedures and identify potential risk factors for the development of complications.

DESIGN Retrospective case series.

ANIMALS 502 horses (556 anesthetic procedures).

PROCEDURES Medical records from January 2012 through December 2014 were reviewed to identify horses undergoing general anesthesia. Signalment, body weight, drugs administered, patient positioning, procedure type (ophthalmic, orthopedic, soft tissue, or diagnostic imaging), specific procedure, procedure time, anesthesia time, recovery time, recovery quality, and postoperative complications were recorded.

RESULTS Patients underwent general anesthesia for ophthalmic (n = 106), orthopedic (246), soft tissue (84), diagnostic imaging (110), or combined (10) procedures. Mean procedure, anesthesia, and recovery times were significantly longer for patients undergoing ophthalmic versus non-ophthalmic procedures. Excluding diagnostic imaging procedures, there was a significant positive correlation between surgery time and recovery time. Within ophthalmic procedures, surgery time, anesthesia time, and recovery time were significantly greater for penetrating keratoplasty versus other ophthalmic procedures. There was a significantly higher rate of postoperative colic following penetrating keratoplasty, compared with all other ophthalmic procedures.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that in healthy horses, duration of general anesthesia should be minimized to decrease the risk of postanesthetic complications. Judicious use of orally administered fluconazole is recommended for horses undergoing general anesthesia. For horses undergoing a retrobulbar nerve block during general anesthesia, use of the lowest effective volume is suggested.

Restricted access
in Journal of the American Veterinary Medical Association


OBJECTIVE To determine the effects of grape seed extract (GSE), lutein, and fish oil containing omega-3 fatty acids on oxidative stress, migration, proliferation, and viability of lens epithelial cells (LECs).

SAMPLE Lens capsules or cultured LECs obtained from canine cadavers.

PROCEDURES An antioxidant reductive capacity assay was used to determine reducing capability of each substance. The LECs were cultured and incubated with various substances, including N-acetyl cysteine (NAC), when appropriate, and dimethyl sulfoxide (DMSO) as positive and vehicle control substances, respectively. A dichlorofluorescein assay was used to evaluate reactive oxygen species (ROS) production, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine cell viability. Ex vivo posterior capsule opacification (PCO) was used to evaluate LEC migration and proliferation.

RESULTS Antioxidant reductive effects of GSE surpassed those of NAC, lutein, and fish oil containing omega-3 fatty acids. The GSE reduced ROS production in LECs, compared with the DMSO vehicle control, whereas lutein was pro-oxidative. All test substances reduced cell viability. Ex vivo PCO was not altered by GSE, was decreased by lutein, and was increased by fish oil containing omega-3 fatty acids, compared with results for the DMSO vehicle control.

CONCLUSIONS AND CLINICAL RELEVANCE Only GSE had significant antioxidant capabilities and reduced ROS production; however, no effect on ex vivo PCO was detected. Fish oil containing omega-3 fatty acids increased ex vivo PCO. No conclusions could be made regarding antioxidant effects of these substances on LECs. These findings suggested that the substances will not decrease PCO.

Full access
in American Journal of Veterinary Research