Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elizabeth G. Dingboom x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether postnatal development of oxidative capacity and capillary supply of skeletal muscle is affected by various movement regimens in horses.

Animals—35 foals.

Procedures—Dutch Warmblood foals were allocated into 3 groups (box stall rest, box stall rest with training, and free pasture exercise). Training comprised an increasing number of gallop sprints from 1 week after birth to 22 weeks of age. From 22 to 48 weeks, the 3 groups were combined and allowed to exercise freely. Capillary supply (diffusion index [ie, area supplied by 1 capillary]), citrate synthase (CS) activity, and succinate dehydrogenase (SDH) activity were measured in biopsy specimens of deep gluteus medius muscle.

Results—During the first 22 weeks, diffusion index increased in all 3 groups (the training and pasture groups had a smaller increase, compared with the box stall rest group), total SDH activity increased in the training and pasture groups and decreased in the box stall rest group, and CS activity decreased in all groups. The effect of the various movement regimens on the diffusion index remained after the groups were combined.

Conclusions and Clinical Relevance—Withholding of exercise had a negative effect on the capillary supply (ie, diffusion index increased) that remained after box stall rest was discontinued and on oxidative capacity. Box stall rest with training prevented the negative effects and eventually had the same positive effect as pasture exercise.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate whether training for show jumping that is commenced early after birth affects the characteristics of equine locomotory muscle.

Animals—19 Dutch Warmblood horses.

Procedures—Horses were assigned to a trained or not trained (control) group. After weaning, training (free jumping [2 d/wk] that was alternated with a 20-minute period of exercise in a mechanical rotating walker [3 d/wk]) was started and continued until horses were 3 years old. Fiber type composition (determined from myosin heavy chain [MyHC] content), fiber area, diffusion index (area supplied by 1 capillary), citrate synthase activity, and Na+,K+-ATPase content were assessed in gluteus medius muscle specimens collected at 0.5, 1, 2, and 3 years.

Results—Developmental changes included an increase in MyHC fiber type IIa and a decrease in type IIad; increases in fiber area, diffusion index, and citrate synthase activity; and a decrease in Na+,K+-ATPase content. The MyHC fiber type I and type IId were detected in high and low proportions, respectively. Training increased Na+,K+-ATPase content, but did not affect other variables.

Conclusions and Clinical Relevance—In horses, show jumping training at an early age resulted in increased Na+,K+-ATPase content of the deep portions of the gluteus medius muscle. The lack of training effects on the other muscle characteristics can partly be explained by the fact that an appropriate (aerobic) fiber type composition was already established at training commencement. These data also suggested that the developmental changes in equine muscle represent sufficient adaptation to meet the demands of this specific training.

Full access
in American Journal of Veterinary Research