Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Edward E. Large x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To develop a real-time PCR assay for the quantification of mucin gene expression in tracheobronchial brushing specimens from dogs and compare mucin gene expression in specimens from dogs with naturally occurring chronic bronchitis with that in specimens from healthy dogs.

Animals—7 healthy dogs and 5 dogs with chronic bronchitis.

Procedures—Primers that were designed to span the predicted intron-exon boundaries of a canine MUC5AC-like gene were used to develop a real-time PCR assay for quantification of expression of that gene. Total mRNA was isolated from tracheobronchial brushing specimens obtained from dogs with and without bronchitis during anesthesia; MUC5AC-like gene expression in those samples was quantified by use of the real-time PCR assay.

Results—The PCR assay was sensitive and specific for the target sequence, the predicted amino acid sequence of which had greatest homology with human, porcine, and rat MUC5AC. The assay was able to quantify the target over a wide dynamic range. Dogs with chronic bronchitis had a 3.0-fold increase in the quantity of MUC5AC-like mRNA, compared with healthy dogs.

Conclusions and Clinical Relevance—The ability to measure mucin gene expression from tracheobronchial brushing specimens collected from client-owned dogs during routine bronchoscopy should prove to be a useful tool for the study of bronchitis in dogs and expand the usefulness of airway inflammation in dogs as a model for bronchitis in humans.

Full access
in American Journal of Veterinary Research


Objective—To determine whether bronchial brushings from dogs with chronic cough have increased numbers of goblet cells and WBCs, compared with numbers for healthy dogs, or have differing WBC populations, compared with populations in bronchoalveolar lavage (BAL) fluid obtained from dogs with chronic cough.

Animals—9 healthy dogs and 10 dogs with chronic cough.

Procedure—Specimens were collected by use of bronchoscopy. Cellular composition was determined for brushings, and results from dogs with chronic cough were compared with those from healthy dogs. Cellular composition of brushings was compared with composition of BAL obtained from dogs with chronic cough.

Results—Brushings from healthy dogs contained a median of 2.9 × 106 epithelial cells, comprising 100% epithelial cells (96% ciliated, 3% goblet, and 1% other) and no WBCs. Brushings from dogs with chronic cough had 4.5 × 106 epithelial cells, comprising 93% epithelial cells (86% ciliated, 2% goblet, and 12% other). Dogs with chronic cough had significantly greater percentages of WBCs (7%) and neutrophils (6%), compared with values for healthy dogs. Five dogs with chronic cough had no neutrophilic inflammation evident in BAL, but 4 of these had evidence of neutrophilic inflammation in brushings.

Conclusions and Clinical Relevance—Neutrophils, but not goblet cells, were increased in brushings from dogs with chronic cough. Analysis of bronchial brushings provides information about airway inflammation that differs from that found by examination of BAL in some dogs with chronic cough and is a more sensitive indicator of airway inflammation than cytologic examination of BAL in these dogs.

Full access
in American Journal of Veterinary Research