Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Dubraska Diaz-Campos x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Widespread use of antimicrobials in human and veterinary medicine drives the emergence and dissemination of resistant bacteria in human, animal, and environmental reservoirs. The AVMA and FDA Center for Veterinary Medicine have both taken public positions emphasizing the importance of incorporating antimicrobial stewardship in veterinary clinical settings; however, a model for implementing a comprehensive antimicrobial stewardship program in veterinary practice is not readily available.

In 2015, The Ohio State University College of Veterinary Medicine began developing a veterinary antimicrobial stewardship program modeled on existing programs in human health-care institutions and the 7 core elements of a successful hospital antimicrobial stewardship program, as defined by the CDC. The program includes comprehensive antimicrobial use guidelines, active environmental surveillance, and enhanced infection control procedures in The Ohio State University Veterinary Medical Center, along with routine monitoring and reporting of antimicrobial prescribing practices and antimicrobial susceptibility patterns of common pathogens isolated from patients and the hospital environment. Finally, programs have been developed to educate clinicians, staff, and students on antimicrobial resistance and appropriate antimicrobial prescribing practices.

The antimicrobial stewardship program has been designed to help clinicians and students confidently make judicious antimicrobial use decisions and provide them with actionable steps that can help them act as strong stewards while providing the best care for their patients. This report describes our program and the process involved in developing it, with the intent that the program could serve as a potential model for other veterinary medical institutions.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To investigate the prevalence of Escherichia coli contamination and E coli virulence gene signatures consistent with known E coli pathotypes in commercially available conventional diets and raw-meat–based diets (RMBDs).

SAMPLE

40 diets in total (19 conventionally cooked kibble or canned diets and 21 RMBDs) obtained from retail stores or online distributors.

PROCEDURES

Each diet was cultured for E coli contamination in 3 separate container locations using standard microbiological techniques. Further characterization of E coli isolates was performed by polymerase chain reaction-based pathotype and virulence gene analysis.

RESULTS

Conventional diets were negative in all culture based testing. In RMBDs, bacterial contamination was similar to previous reports in the veterinary literature, with 66% (14/21) of the RMBDs having positive cultures for E coli. Among the 191 confirmed E coli isolates from these diets, 31.9% (61/191) were positive for virulence genes. Categorized by pathotype, isolates presumptively belonging to the neonatal meningitis E coli pathotype (15.7% [30/191]) were the most common, followed by enterohemorrhagic E coli (10.5% [20/191]), enteropathogenic E coli (5.8% [11/191]), uropathogenic E coli (2.1% [4/191]), and diffusely adherent E coli (1.6% [3/191]).

CLINICAL RELEVANCE

The results of this study reaffirmed the bacteriologic risks previously associated with RMBDs. Furthermore, potential zoonotic concerns associated with identified pathotypes in these diets may have significant consequences for owners in the animals’ home environment. Potential risk associated with bacterial contamination should be addressed in animals fed RMBDs.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To characterize uropathogenic Escherichia coli (UPEC) in cases of clinical feline urinary tract infection (UTI) and subclinical bacteriuria and investigate the in vitro effects of E coli strain Nissle 1917 on isolate growth.

ANIMALS

40 cats with positive E coli culture results for urine collected during routine evaluation.

PROCEDURES

Characterization of UPEC isolates was performed by PCR-based phylotype analysis and serotyping. Nissle 1917 effects on growth inhibition and competitive overgrowth against UPEC isolates were evaluated in vitro using a plate-based competition assay.

RESULTS

Feline phylogroups were similar to previous human and feline UPEC studies, with most of the isolates belonging to phylogroup A (42.5%), B2 (37.5%), and D (15.0%). Fifty-two percent of isolates were found to be resistant to antimicrobials, with 19% of these being multidrug resistant (MDR). Nissle 1917 adversely affected the growth of 82.5% of all isolates and 100% of MDR isolates in vitro. The median zone of inhibition was 3.33 mm (range, 1.67 to 10.67 mm). Thirteen isolates were affected via competitive overgrowth and 20 via growth inhibition.

CLINICAL RELEVANCE

UPEC isolates from cats were similar in phylogroup analysis to human and dog isolates. The in vitro effects of Nissle 1917 on UPEC warrant additional studies to determine if similar results can be duplicated in vivo.

Open access
in American Journal of Veterinary Research