Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Dominique Grandjean x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the accuracy of asymmetry indices of ground reaction forces (GRF) for diagnosis of hind limb lameness in dogs.

Animals—36 healthy dogs and 13 dogs with naturally acquired cranial cruciate ligament rupture or hip dysplasia.

Procedures—Lameness for affected dogs ranged from not detectable to minor and constant. While dogs trotted on an instrumented treadmill, GRF variables were recorded and analyzed with asymmetry indices. Each index was tested for its ability to discriminate between healthy and affected dogs. Combinations of several indices were also assessed.

Results—Vertical force variables had better accuracy than craniocaudal force variables. Peak vertical force was the most accurate variable. Partial asymmetry during trotting was detected in healthy dogs. A multivariate approach that used peak vertical force and maximal rising slope yielded the optimum combination to distinguish between healthy and affected dogs. In addition, sensitivity of 92% or specificity of 95% may be achieved with 2 cutoff values while simultaneously maintaining specificity or sensitivity, respectively, at > 85%.

Conclusions and Clinical Relevance—Asymmetry indices of GRFs were accurate for detection of hind limb lameness in dogs. This is particularly relevant for study designs in which only a single gait evaluation is possible.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To develop equations for prediction of total body water (TBW) content in unsedated dogs by combining impedance (resistance and reactance) and morphological variables and to compare the results of those equations with TBW content determined by deuterium dilution (TBWd).

ANIMALS 26 healthy adult Beagles.

PROCEDURES TBW content was determined directly by deuterium dilution and indirectly with equations developed from measurements obtained by use of a portable bioelectric impedance device and morphological variables including body length, height, weight, and thoracic and abdominal circumferences.

RESULTS Impedance and morphological data from 16 of the 26 dogs were used to determine coefficients for the following 2 equations: TBW1 = −0.019 (BL2/R) + −0.199 (RC + AC) + 0.996W + 0.081H + 12.31; and TBW2 = 0.048 (BL2/R) + −0.144 (RC + AC) + 0.777W + 0.066H + 0.031X + 7.47, where AC is abdominal circumference, H is height, BL is body length, R is resistance, RC is rib cage circumference, W is body weight, and × is reactance. Results for TBW1 (R 2 1 = 0.843) and TBW2 (R 2 2 = 0.816) were highly correlated with the TBWd. When the equations were validated with data from the remaining 10 dogs, the respective mean differences between TBWd and TBW1 and TBW2 were 0.17 and 0.11 L, which equated to a nonsignificant underestimation of TBW content by 2.4% and 1.6%, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that impedance and morphological data can be used to accurately estimate TBW content in adult Beagles. This method of estimating TBW content is less expensive and easier to perform than is measurement of TBWd, making it appealing for daily use in veterinary practice.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate fecal calprotectin concentrations in healthy dogs and dogs with chronic diarrhea, to identify cutoff values for fecal calprotectin concentrations for use in differentiating dogs with chronic diarrhea and a canine chronic enteropathy clinical activity index (CCECAI) < 12 from dogs with chronic diarrhea and a CCECAI ≥ 12, and to evaluate the association between histologic evidence of intestinal mucosal changes and fecal calprotectin concentrations in dogs with chronic diarrhea.

Sample—Fecal samples from 96 adult dogs (27 dogs with chronic diarrhea and 69 healthy control dogs).

Procedures—Severity of clinical signs was evaluated on the basis of the CCECAI scoring system. Endoscopy was performed in all dogs with chronic diarrhea, and mucosal biopsy specimens were evaluated histologically. Fecal calprotectin concentration was quantified via radioimmunoassay.

Results—Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea than in healthy control dogs. Fecal calprotectin concentrations were also significantly higher in dogs with a CCECAI ≥ 12, compared with concentrations for dogs with a CCECAI between 4 and 11. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea associated with histologic lesions, compared with concentrations in control dogs, and were significantly correlated with the severity of histologic intestinal lesions. Among dogs with chronic diarrhea, the best cutoff fecal calprotectin concentration for predicting a CCECAI ≥ 12 was 48.9 μg/g (sensitivity, 53.3%; specificity, 91.7%).

Conclusions and Clinical Relevance—Fecal calprotectin may be a useful biomarker in dogs with chronic diarrhea, especially dogs with histologic lesions.

Full access
in American Journal of Veterinary Research