Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Dipa Brahmbhatt x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the effect of daily oral administration of decoquinate to neonatal calves experimentally challenged with various numbers of Cryptosporidium parvumo ocysts.

Design—Clinical trial.

Animals—75 calves.

Procedure—Calves were purchased from a commercial dairy during a 5-week period. Calves were housed in individual hutches and fed milk replacer with or without decoquinate (2 mg/kg [0.9 mg/lb per day]). Calves were randomly assigned to treatment and 1 of 5 challenge groups (0, 50, 100, 1000, or 10,000 C parvum oocysts in 60 mL of saline [0.9% NaCl] solution administered PO on the day after arrival). Calves were maintained in the study for as long as 28 days. Calves were clinically assessed for diarrhea and dehydration. Fecal samples were submitted for oocyst enumeration 3 times each week.

Results—Treatment did not affect number of days to first watery feces (diarrhea), number of days to first oocyst shedding, or duration of diarrhea or oocyst shedding. Duration of oocyst shedding was significantly associated with challenge dose of oocysts administered to calves and number of days to first oocyst shedding. Duration of diarrhea and number of days to first oocyst shedding were significantly associated with week of arrival and number of days to first watery diarrhea.

Conclusions and Clinical Relevance—Daily treatment with decoquinate at the dosage used in this study did not affect oocyst shedding or clinical signs associated with cryptosporidiosis. However, there was an indication that if the number of oocysts calves received could be reduced, then the duration of oocyst shedding and, hence, environmental loading of C parvum oocysts could be reduced. (J Am Vet Med Assoc 2003;223:839–845)

Full access
in Journal of the American Veterinary Medical Association


Objective—To monitor ovine herpesvirus type 2 (OvHV-2) infection status and the association between OvHV-2 infection and development of clinical signs of malignant catarrhal fever (MCF) in cattle.

Design—Longitudinal study.

Animals—30 mature adult cows and 18 cattle submitted for necropsy.

Procedure—Blood and milk samples were collected at monthly intervals from 30 adult cows for 20 consecutive months. Nasal and ocular swab specimens were also collected during months 9 through 20. Polymerase chain reaction (PCR) assay for detection of OvHV-2 was performed on blood, milk, nasal swab, and ocular swab specimens. Competitive inhibition ELISA (CI-ELISA) for detection of antibodies against MCF viruses was performed on serum samples obtained prior to study initiation and monthly during the last 12 months. Tissues obtained from herdmates without clinical signs of MCF that were submitted for necropsy were analyzed for OvHV-2 DNA via PCR assay for possible sites of latency.

Results—Initially, 8 of 30 cows had positive CI-ELISA results. Seroconversion was detected in 4 cows. Ovine herpesvirus type 2 DNA was intermittently detected in blood, milk, nasal secretions, or ocular secretions from 17 of 30 cows. Twenty-one cows had positive CI-ELISA or PCR assay results. No cattle in the study developed clinical signs of MCF. Results of PCR assays performed on tissue samples from 2 of 18 animals submitted for necropsy were positive for OvHV-2.

Conclusions and Clinical Relevance—OvHV-2 infection can occur in cattle without concurrent development of clinical MCF. Ovine herpesvirus type 2 DNA was detected intermittently, suggesting fluctuating viral DNA loads or reinfection in subclinical cattle. A definitive site of latency was not identified from tissues obtained during necropsy. (J Am Vet Med Assoc 2005;227:606–611)

Full access
in Journal of the American Veterinary Medical Association