Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Dhvani A. Barot x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To determine the effects of a single dose of the NSAIDs phenylbutazone, firocoxib, flunixin meglumine, and ketoprofen on concentrations of growth factors and cytokines in autologous protein solution (APS) and platelet-rich plasma (PRP).

ANIMALS

6 adult university-owned horses.

METHODS

For the first phase, 6 horses were randomized to receive ketoprofen (1,000 mg) or flunixin meglumine (500 mg) IV. Blood was obtained and processed for APS (Pro-Stride) and PRP (Restigen) before and 6 hours after administration of NSAIDs. Horses underwent a 2-week washout period, after which the protocol was repeated using a crossover design. For the second phase, following at least a 2-week washout period, the study protocol was repeated with phenylbutazone (1 g) or firocoxib (57 mg) administered orally. Plasma was collected 6 hours after administration for evaluation of drug concentrations, and APS and PRP were analyzed for concentrations of drug, platelets, leukocytes, and several growth factors and cytokines (PDGF, fibroblast growth factor, TGF-β1, IL-1β, IL-10, IL-6, IL-8, and tumor necrosis factor-α) before and 6 hours after administration of NSAIDs using immunoassays.

RESULTS

There were no significant differences in concentrations of cytokines or growth factors before or after administration of any NSAID. There were significant differences in concentrations of leukocytes and platelets based on both product and time. NSAID concentrations in plasma were not significantly different from concentrations in APS and PRP.

CLINICAL RELEVANCE

These results help guide clinicians on the appropriate use of these NSAIDs in conjunction with the processing of APS and PRP, which is unlikely to significantly alter the final product after single-dose administration.

Open access

Abstract

OBJECTIVE

Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have emerged as a biotherapeutic for osteoarthritis; however, manufacturing large quantities is not practical using traditional monolayer (2-D) culture. We aimed to examine the effects of 3-D and 2-D culture 2 types of media: Dulbecco modified Eagle medium and a commercially available medium (CM) on EV yield.

ANIMALS

Banked bone marrow–derived MSCs (BM-MSCs) from 6 healthy, young horses were used.

METHODS

4 microcarriers (collagen-coated polystyrene, uncoated polystyrene, collagen-coated dextran, and uncoated dextran) were tested in static and bioreactor cultures, and the optimal microcarrier was chosen. The BM-MSCs were inoculated into a bioreactor with collagen-coated dextran microcarriers at 5,000 cells/cm2 or onto culture dishes at 4,000 cells/cm2 in either Dulbecco modified Eagle medium or CM media. Supernatants were obtained for metabolite and pH analysis. The BM-MSCs were expanded until confluent (2-D) or for 7 days (3-D) when the 48-hour EV collection period commenced using EV-depleted media. Extracellular vesicles were isolated and characterized via nanoparticle tracking analysis, Western blot, transmission electron microscopy, and protein quantification. The BM-MSCs were harvested, quantified, and immunophenotyped.

RESULTS

The number of EVs isolated was not improved by 3-D culture or CM media, however, the CM 3-D condition improved the number of EVs produced per BM-MSC over the CM 2-D condition (mean ± SD: 306 ± 99 vs 37 ± 22, respectively). Glucose decreased and lactate and ammonium accumulated in 3-D culture. Surface markers of stemness exhibited reduced expression in 3-D culture.

CLINICAL RELEVANCE

Optimization of our 3-D culture methods could improve BM-MSC expansion and thus EV yield.

Open access
in Journal of the American Veterinary Medical Association