Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Delphim G. Macoris x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effect of experimental intraluminal distention on microvascular perfusion of the small colon in horses.

Animals—6 mixed-breed healthy horses (mean age [± SD], 9.1 ± 2 years).

Procedure—Under general anesthesia, the small colon was exposed by celiotomy and 3 segments were demarcated. In 1 of these segments, intraluminal obstruction was created by placement of a latex balloon inflated to a pressure of 40 mm Hg (obstructed segment). The other segments were the sham-operated segment and the control segment. Microvascular perfusion was evaluated in the mucosal, submucosal, muscular, and serosal layers by injection of 15-µm-diameter colored microspheres into branches of the caudal mesenteric artery. Recovery of microspheres was performed by tissue digestion, washing, and centrifugation. Distribution of microspheres in the intestinal layers was evaluated by direct observation of stained frozen sections by light microscopy.

Results—A significant reduction was observed in total microvascular perfusion of obstructed segments, which was 26.4% of that of control segments. This reduction was not evident in the mucosal layer.

Conclusion and Clinical Relevance—Intraluminal distention of the equine small colon wall can promote ischemia by a reduction in microvascular perfusion in the intestinal wall. Intestinal layers do not seem to be affected to the same extent, because the absolute value for mucosal perfusion did not decrease in the obstructed segment. (Am J Vet Res 2002;63:1292–1297)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate clinical safety of administration of injectable enrofloxacin.

Design—Randomized controlled clinical trial.

Animals—24 adult horses.

Procedures—Healthy horses were randomly allocated into 4 equal groups that received placebo injections (control) or IV administration of enrofloxacin (5 mg/kg [2.3 mg/lb], 15 mg/kg [6.8 mg/lb], or 25 mg/kg [11.4 mg/lb] of body weight, q 24 h) for 21 days. Joint angles, cross-sectional area of superficial and deep digital flexor and calcaneal tendons, carpal or tarsal osteophytes or lucency, and midcarpal and tarsocrural articular cartilage lesions were measured. Physical and lameness examinations were performed daily. Measurements were repeated after day 21, and articular cartilage and bone biopsy specimens were examined.

Results—Enrofloxacin did not induce changes in most variables during administration or for 7 days after administration. One horse (dosage, 15 mg/kg) developed lameness and cellulitis around the tarsal plantar ligament during the last week of administration. One horse (dosage, 15 mg/kg) developed mild superficial digital flexor tendinitis, and 1 horse (dosage, 25 mg/kg) developed tarsal sheath effusion without lameness 3 days after the last administration. High doses of enrofloxacin (15 and 25 mg/kg) administered by bolus injection intermittently induced transient neurologic signs that completely resolved within 10 minutes without long-term effects. Slower injection and dilution of the dose ameliorated the neurologic signs. Adverse reactions were not detected with a 5 mg/kg dose administered IV as a bolus.

Conclusions and Clinical Relevance—Enrofloxacin administered IV once daily at the rate of 5 mg/kg for 3 weeks is safe in adult horses. (J Am Vet Med Assoc 2000;217:1514–1521)

Restricted access
in Journal of the American Veterinary Medical Association