Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Deborah A. Grosenbaugh x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare protection against FeLV challenge obtained following administration of 2 doses of an adjuvanted, chemically inactivated, whole FeLV (FeLV-k) vaccine with protection obtained following administration of 1 dose of an FeLV-k vaccine followed by 1 dose of a canarypox virus–vectored recombinant FeLV (rCP-FeLV) vaccine.

Design—Prospective study.

Animals—Thirty-two 9-week-old domestic shorthair cats.

Procedure—Cats received 2 doses of the FeLV-k vaccine SC, 21 days apart (n = 11); 1 dose of the FeLV-k vaccine SC and, 21 days later, 1 dose of the rCP-FeLV vaccine transdermally (11); or 2 doses of physiologic saline (0.9% NaCl) solution (control; 10). Four weeks after the second vaccine dose, all cats were challenged with FeLV by means of oronasal administration. Blood samples were collected at weekly intervals beginning 21 days after challenge, and serum was tested for FeLV antigen.

Results—All 10 control cats became persistently infected (ie, FeLV antigen detected in ≥ 3 consecutive serum samples) following FeLV challenge, whereas only 1 of 11 cats that received 2 doses of the FeLV-k vaccine and none of the 11 cats that received 1 dose of the FeLV-k vaccine and 1 dose of the rCP-FeLV vaccine did.

Conclusions and Clinical Relevance—Results suggest that protection against FeLV challenge obtained following SC administration of a single dose of an FeLV-k vaccine followed, 21 days later, by transdermal administration of a single dose of an rCP-FeLV vaccine was similar to that obtained following SC administration of 2 doses of the FeLV-k vaccine 21 days apart.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective

To determine cardiorespiratory effects of a tiletamine/zolazepam-ketamine-detomidine (TZKD) combination in horses.

Animals

8 healthy adult horses.

Procedure

Horses were instrumented for measurement of cardiorespiratory, acid-base, and electrolyte values. Each horse was given xylazine (0.44 mg/kg of body weight, IV) 10 to 15 minutes prior to induction of recumbency by administration of the TZKD combination. Cardiorespiratory, acid-base, and electrolyte values were measured at 5-minute intervals for ≥ 30 minutes.

Results

All horses became recumbent within 1 minute after IV administration of TZKD. Mean ± SD duration of recumbency was 40 ± 8 minutes. All horses regained standing position after ≤ 2 attempts. Quality of anesthesia and analgesia was determined to be satisfactory in all horses. Xylazine induced decreases in respiratory rate, heart rate, cardiac output, maximum rate of increase of right ventricular pressure, and rate pressure product. The PaCO2, right atrial pressure, and peripheral vascular resistance increased, whereas blood temperature, PO2, pHa, HCO3 , PCV, total solids, Na, and K values remained unchanged. Subsequent administration of TZKD caused right atrial pressure and PaCO2 to increase and PaO2 to decrease, compared with values obtained after xylazine administration. Remaining cardiorespiratory, acid-base, hematologic, and electrolyte values did not differ from those obtained after xylazine administration.

Conclusion

IV administration of TZKD induces short-term anesthesia in horses. Potential advantages of this drug combination are the small volume of drug administered; minimal cardiorespiratory depression; quality of induction and maintenance of, and recovery from, anesthesia; and duration of drug effects. (Am J Vet Fles 1999;60:770–774)

Free access
in American Journal of Veterinary Research

Abstract

Objective—To determine the tissue-restricted expression pattern of tyrosinase mRNA in canine and equine melanocytic tumors and relative tyrosinase and major histocompatibility complex (MHC) I mRNA expression in variants of melanocytic tumors.

Sample—39 canine and 8 equine tumor samples and 10 canine and 6 equine normal tissue samples.

Procedures—RNA was isolated from formalin-fixed, paraffin-embedded tissues. Real-time PCR assays were designed to amplify canine and equine tyrosinase, S18 ribosomal RNA, and major histocompatibility complex I transcripts. Relative expression was determined by use of S18 as a reference and comparison with pigmented and nonpigmented normal tissues.

Results—High tyrosinase expression was found in all melanocytic tumors, compared with normal tissues, and expression had no correlation with presence or absence of tumor pigmentation. No significant difference in tyrosinase expression was found among histologic variants of melanocytic tumors. No correlation was found between MHC I and tyrosinase expression or tissue histologic classification.

Conclusions and Clinical Relevance—In the present study, the methods used were highly sensitive and specific for detection of tyrosinase expression in equine and canine tumors, and overexpression of this transcript in melanomas was detected. This suggested that a DNA vaccine developed for use in dogs with melanoma that targets tyrosinase may be considered for use in other affected species, such as horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the safety and efficacy of a vaccine containing plasmid DNA with an insert encoding human tyrosinase (ie, huTyr vaccine) as adjunctive treatment for oral malignant melanoma (MM) in dogs.

Animals—111 dogs (58 prospectively enrolled in a multicenter clinical trial and 53 historical controls) with stage II or III oral MM (modified World Health Organization staging scale, I to IV) in which locoregional disease control was achieved.

Procedures—58 dogs received an initial series of 4 injections of huTyr vaccine (102 μg of DNA/injection) administered transdermally by use of a needle-free IM vaccination device. Dogs were monitored for adverse reactions. Surviving dogs received booster injections at 6-month intervals thereafter. Survival time for vaccinates was compared with that of historical control dogs via Kaplan-Meier survival analysis for the outcome of death.

Results—Kaplan-Meier analysis of survival time until death attributable to MM was determined to be significantly improved for dogs that received the huTyr vaccine, compared with that of historical controls. However, median survival time could not be determined for vaccinates because < 50% died of MM before the end of the observation period. No systemic reactions requiring veterinary intervention were associated with vaccination. Local reactions were primarily limited to acute wheal or hematoma formation, mild signs of pain at the injection site, and postvaccination bruising.

Conclusions and Clinical Relevance—Results support the safety and efficacy of the huTyr DNA vaccine in dogs as adjunctive treatment for oral MM.

Impact for Human Medicine—Response to DNA vaccination in dogs with oral MM may be useful in development of plasmid DNA vaccination protocols for human patients with similar disease.

Full access
in American Journal of Veterinary Research