Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dario Floriano x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To determine the accuracy of tidal volume (VT) delivery among 5 different models of large-animal ventilators when tested at various settings for VT delivery, peak inspiratory flow (PIF) rate, and fresh gas flow (FGF) rate.

SAMPLE

4 different models of pneumatically powered ventilators and 1 electrically powered piston-driven ventilator.

PROCEDURES

After a leak flow check, each ventilator was tested 10 times for each experimental setting combination of 5 levels of preset VT, 3 PIF rates, and 4 FGF rates. A thermal mass flow and volume meter was used as the gold-standard method to measure delivered VT. In addition, circuit systems of rubber versus polyvinyl chloride breathing hoses were evaluated with the piston-driven ventilator. Differences between preset and delivered VT (volume error [δVT]) were calculated as a percentage of preset VT, and ANOVA was used to compare results across devices. Pearson correlation coefficient analyses and the coefficient of determination (r ) were used to assess potential associations between the δVT and the preset VT, PIF rate, and FGF rate.

RESULTS

For each combination of experimental settings, ventilators had δVT values that ranged from 1.2% to 22.2%. Mean ± SD δVT was 4.8 ± 2.5% for the piston-driven ventilator, compared with 6.6 ± 3.2%, 10.6 ± 2.9%, 13.8 ± 2.97%, and 15.2 ± 2.6% for the 4 pneumatic ventilators. The δVT increased with higher PIF rates (r = 0.69), decreased with higher FGF rates (r = 0.62), and decreased with higher preset VT (r = 0.58).

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that the tested ventilators all had δVT but that the extent of each of δVT varied among ventilators. Close monitoring of delivered VT with external flow and volume meters is warranted, particularly when pneumatic ventilators are used or when very precise VT delivery is required.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the efficacy of 2 different oxygen delivery strategies—intranasal and tracheal insufflation—on the inspired fraction of oxygen (FIO2) in standing horses and to determine the time needed for arterial oxygen partial pressure (PaO2) equilibration.

ANIMALS

6 healthy adult horses.

PROCEDURES

In this blinded, randomized crossover design study, horses were randomly assigned to receive oxygen via nasal cannula (group N) or transcutaneous tracheal catheter (group T). After placement of venous and arterial catheters, FIO2 was measured through a catheter placed into the distal portion of the trachea. After baseline measurements were obtained, horses received oxygen at up to 25 mL/kg/min for 1 hour via either intranasal or intratracheal catheter. The FIO2 and PaO2 were recorded at 5, 10, 15, 20, 25, 30, 45, and 60 minutes during and 5, 10, 15, 20, and 30 minutes after oxygen insufflation. Data were analyzed by use of a 2-way repeated measures ANOVA with Tukey-Kramer post hoc testing for pairwise comparisons (P < 0.05).

RESULTS

During oxygen administration, FIO2 and PaO2 increased significantly when compared with baseline, resulting in significantly higher values for group T (37.7 ± 2.4%; 214.6 ± 18 mm Hg) than for group N (34.3 ± 3.9%; 184.1 ± 11 mm Hg). The equilibration time was less than 10 minutes.

CLINICAL RELEVANCE

Intratracheal oxygen administration resulted in better oxygenation than nasal insufflation and should therefore be considered in standing horses that are experiencing severe respiratory compromise. The equilibration between FIO2 and PaO2 is rapid in adult horses.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association