Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Daniel J. Burba x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare plasma and synovial fluid endothelin-1 (ET-1) and nitric oxide (NO) concentrations in clinically normal horses and horses with joint disease.

Animals—36 horses with joint disease, and 15 horses without joint disease.

Procedure—Horses with joint disease were assigned to 1 of the 3 groups (ie, synovitis, degenerative joint disease [DJD], or joint sepsis groups) on the basis of findings on clinical and radiographic examination and synovial fluid analysis. Endothelin-1 and NO concentrations were measured in plasma from blood samples, collected from the jugular vein and ipsilateral cephalic or saphenous vein of the limb with an affected or unaffected joint, as well as in synovial fluid samples obtained via arthrocentesis from the involved joint.

Results—Plasma ET-1 concentrations between affected and unaffected groups were not significantly different. Median concentration and concentration range of ET-1 in synovial fluid obtained from the joint sepsis group (35.830 pg/mL, 7.926 to 86.614 pg/mL; n = 7) were significantly greater than values from the synovitis (17.531 pg/mL, 0.01 to 46.908 pg/mL; 18), DJD (22.858 pg/mL, 0.01 to 49.990 pg/mL; 10), and unaffected (10.547 pg/mL, 0.01 to 35.927 pg/mL; 10) groups. Plasma and synovial fluid NO concentrations between affected and unaffected groups were not significantly different.

Conclusions and Clinical Relevance—Endothelin-1 is locally synthesized in the joints of horses with various types of joint disease. Synovial fluid concentrations of ET-1 varied among horses with joint disease, with concentrations significantly higher in the synovial fluid of horses with joint sepsis. These results indicate that ET-1 may play a role in the pathophysiologic mechanism of joint disease in horses. (Am J Vet Res 2002;63:1648–1654)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine functional and morphologic changes in palmar digital nerves after nonfocused extracorporeal shock wave (ESW) treatment in horses.

Animals—6 horses.

Procedures—The medial and lateral palmar digital nerves of the left forelimb were treated with nonfocused ESWs. The medial palmar digital nerve of the right forelimb served as a nontreated control nerve. At 3, 7, and 35 days after treatment, respectively, 2 horses each were anesthetized and nerves were surgically exposed. Sensory nerve conduction velocities (SNCVs) of treated and control nerves were recorded, after which palmar digital neurectomies were performed. Morphologic changes in nerves were assessed via transmission electron microscopy.

Results—Significantly lower SNCV in treated medial and lateral nerves, compared with control nerves, was found 3 and 7 days after treatment. A significantly lower SNCV was detected in treated medial but not lateral nerves 35 days after treatment. Transmission electron microscopy of treated nerves revealed disruption of the myelin sheath with no evidence of damage to Schwann cell bodies or axons, 3, 7, and 35 days after treatment.

Conclusions and Clinical Relevance—Nonfocused ESW treatment of the metacarpophalangeal area resulted in lower SNCV in palmar digital nerves. This effect likely contributes to the post-treatment analgesia observed in horses and may result in altered peripheral pain perception. Horses with preexisting lesions may be at greater risk of sustaining catastrophic injuries when exercised after treatment. (Am J Vet Res 2004;65:1714–1718)

Full access
in American Journal of Veterinary Research