Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Daniel D. Taylor x
  • Refine by Access: All Content x
Clear All Modify Search



To assess production animal medicine veterinarians' prescription practices and identify factors influencing their use of antimicrobial drugs (AMDs) and their perceptions of and attitudes toward antimicrobial resistance (AMR).


157 production animal veterinarians in the United States.


An online cross-sectional survey and digital diary were used to gather information regarding perceptions on AMD use and AMR and on treatment recommendations for production setting-specific disease scenarios. Results were compared across respondents grouped by their selected production setting scenarios and reported years as veterinarians.


The most commonly selected production setting disease scenarios were dairy cattle (96/157 [61.1%]), backgrounding cattle (32/157 [20.4%]), and feedlot cattle (20/157 [12.7%]). Because few respondents selected swine (5/157 [3.2%]) or poultry (4/157 [2.5%]) scenarios, those responses were excluded from statistical analysis of AMD prescription practices. Most remaining respondents (147/148 [99.3%]) reported that they would recommend AMD treatment for an individual ill animal; however, responses differed for respondents grouped by their selected production setting scenarios and reported years as veterinarians when asked about AMD treatment of an exposed group or high-risk disease-free group. Most respondents reported that government regulations influenced their AMD prescribing, that owner and producer compliance was a veterinary-related factor that contributed to AMR, and that environmental modifications to prevent disease could be effective to mitigate AMR.


Results of the present study helped fill important knowledge gaps pertaining to prescription practices and influencing factors for AMD use in production animal medicine and provided baseline information for future assessments. This information could be used to inform future interventions and training tools to mitigate the public health threat of AMR.

Restricted access
in Journal of the American Veterinary Medical Association


Objective—To measure the relationship between gross lesions in swine carcasses observed at a processing plant and Salmonella contamination and to determine whether nonexpert assessments of lesion status would correspond with swine pathologists' judgments.

Animals—Carcasses of 202 conventionally raised and 156 antimicrobial-free pigs in a Midwestern US processing plant examined from December 2005 to January 2006.

Procedures—4 replicates were conducted. For each, freshly eviscerated carcasses were identified as having or lacking visceral adhesions by a nonexpert evaluator and digital carcass photographs were obtained. Swab specimens were obtained from carcasses before the final rinse stage of processing, and bacterial culture for Salmonella spp and Enterococcus spp was performed. Subsequently, carcass photographs were numerically scored for lesion severity by 3 veterinary pathologists. Results were used to test the ability of lesion detection to predict bacterial contamination of carcasses and the agreement between judgments of the inexperienced and experienced assessors.

Results—The probability of Salmonella contamination in carcasses with lesions identified at the abattoir was 90% higher than that in carcasses lacking lesions, after controlling for replicate identity and antimicrobial use. The receiver operating characteristic curve and Cohen κ indicated close agreement between lesion detection at the abattoir and by the 3 pathologists.

Conclusions and Clinical Relevance—Findings indicated the presence of lesions could be used to predict Salmonella contamination of swine carcasses and that a nonexpert processing-line assessment of lesions could be used to discriminate between healthy and chronically ill swine before their entry into the human food supply.

Full access
in American Journal of Veterinary Research