Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D. Paul Lunn x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effects of dexamethasone on development of IgG subclass responses following vaccination of healthy horses.

Animals—11 mature Thoroughbreds.

Procedure—Horses received 2 IM injections at 2- week intervals of a vaccine containing inactivated infectious bovine rhinotracheitis, bovine viral diarrhea, and parainfluenza-3 viral antigens and were then randomly assigned to 2 groups. Six horses received dexamethasone (0.2 mg/kg of body weight, IM) twice weekly for 8 weeks starting the day of the first vaccination. Five control horses received an equivalent volume of saline (0.9% NaCl) solution. Antigen-specific serum IgG subclass titers were determined weekly after vaccination by use of an ELISA.

Results—Vaccination resulted in similar antigen-specific serum IgG(T) titers in dexamethasone-treated and control horses. In contrast, although control horses developed IgGa and IgGb responses after vaccination, corticosteroid administration completely inhibited these responses in treated horses.

Conclusions and Clinical Relevance—Cortico steroids can have profound effects on primary immune responses in horses and can significantly affect IgG responses to inactivated vaccines. Corticosteroid treatment regimens commonly used to treat diseases in horses may result induction of a nonprotective IgG subclass response, leaving treated horses susceptible to disease. Additionally, mechanisms regulating IgGa and IgGb responses appear to differ from those regulating IgG(T) responses. Further defining these mechanisms is a critical step in designing effective vaccines, and corticosteroid-induced immunomodulation may be a valuable tool for studying immune responses in horses. (Am J Vet Res 2000;61:1530–1533)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine safety, efficacy, and immunogenicity of an intranasal cold-adapted modified- live equine influenza virus vaccine administered to ponies following induction of exercise-induced immunosuppression.

Design—Prospective study.

Animals—Fifteen 9- to 15-month old ponies that had not had influenza.

Procedure—Five ponies were vaccinated after 5 days of strenuous exercise on a high-speed treadmill, 5 were vaccinated without undergoing exercise, and 5 were not vaccinated or exercised and served as controls. Three months later, all ponies were challenged by nebulization of homologous equine influenza virus. Clinical and hematologic responses and viral shedding were monitored, and serum and nasal secretions were collected for determination of influenza-virus-specific antibody isotype responses.

Results—Exercise caused immunosuppression, as indicated by depression of lymphocyte proliferation in response to pokeweed mitogen. Vaccination did not result in adverse clinical effects, and none of the vaccinated ponies developed clinical signs of infection following challenge exposure. In contrast, challenge exposure caused marked clinical signs of respiratory tract disease in 4 control ponies. Vaccinated and control ponies shed virus after challenge exposure. Antibody responses to vaccination were restricted to serum IgGa and IgGb responses in both vaccination groups. After challenge exposure, ponies in all groups generated serum IgGa and IgGb and nasal IgA responses. Patterns of serum hemagglutination inhibition titers were similar to patterns of IgGa and IgGb responses.

Conclusions and Clinical Relevance—Results suggested that administration of this MLV vaccine to ponies with exercise-induced immunosuppression was safe and that administration of a single dose to ponies provided clinical protection 3 months later. (J Am Vet Med Assoc 2001;218:900–906)

Restricted access
in Journal of the American Veterinary Medical Association