Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Cynthia A. Cole x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the durations of the local anesthetic effect and plasma procaine concentrations associated with 5- and 10-mg doses of procaine hydrochloride (with or without 100 μg of epinephrine) administered SC over the lateral palmar digital nerves of horses.

Animals—6 healthy adult horses.

Procedures—The hoof withdrawal reflex latency (HWRL) period was determined by use of a focused heat lamp before and after administration of procaine with and without epinephrine. Blood samples were collected immediately before determination of each HWRL period to assess plasma concentrations of procaine via liquid chromatography–mass spectrometry–mass spectrometry (LC-MS-MS).

Results—10 but not 5 mg of procaine alone and 5 and 10 mg of procaine administered with epinephrine significantly prolonged the HWRL period (mean durations of effect, 5, 120 and 180 minutes, respectively), compared with baseline values. Plasma procaine concentrations did not correlate well with local anesthetic activity; for example, although the HWRL was prolonged to the maximum permitted duration of 20 seconds at 60 to 180 minutes following administration of the 5-mg dose of procaine with epinephrine in certain horses, plasma procaine concentrations were less than the limit of quantitation of the LC-MS-MS assay.

Conclusions and Clinical Relevance—Small doses of procaine coadministered with epinephrine provided long-lasting local analgesia and resulted in plasma procaine concentrations that were not always detectable via LC-MS-MS. On the basis of these results, the use of regulatory limits or thresholds for procaine concentration in equine plasma samples obtained after racing should be seriously reconsidered.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine serum pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite in horses after administration of a single IV dose and after single and multiple oral doses.

Animals—8 healthy adult horses.

Procedures—A crossover study design was used with a washout period of 6 days between treatments. Treatments were IV administration of a single dose of pentoxifylline (8.5 mg/kg) and oral administration of generic sustained-release pentoxifylline (10 mg/kg, q 12 h, for 8 days). Blood samples were collected 0, 1, 3, 6, 12, 20, 30, and 45 minutes and 1, 2, 4, 6, 8, and 12 hours after IV administration. For oral administration, blood samples were collected 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, and 12 hours after the first dose and 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 hours after the last dose.

Results—Elimination of pentoxifylline was rapid after IV administration. After oral administration, pentoxifylline was rapidly absorbed and variably eliminated. Higher serum concentrations of pentoxifylline and apparent bioavailability were observed after oral administration of the first dose, compared with values after administration of the last dose on day 8 of treatment.

Conclusions and Clinical Relevance—In horses, oral administration of 10 mg of pentoxifylline/kg results in serum concentrations equivalent to those observed for therapeutic doses of pentoxifylline in humans. Twice daily administration appears to be appropriate. However, serum concentrations of pentoxifylline appear to decrease with repeated dosing; thus, practitioners may consider increasing the dosage if clinical response diminishes with repeated administration.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare characteristics of horses recovering from 4 hours of desflurane anesthesia with and without immediate postanesthetic IV administration of propofol and xylazine.

Animals—8 healthy horses (mean ± SEM age, 6.6 ± 1.0 years; mean body weight, 551 ± 50 kg).

Procedures—Horses were anesthetized twice. Both times, anesthesia was induced with a combination of xylazine hydrochloride, diazepam, and ketamine hydrochloride and then maintained for 4 hours with desflurane in oxygen. Choice of postanesthetic treatment was randomly assigned via a crossover design such that each horse received an IV injection of propofol and xylazine or saline (0.9% NaCl) solution after the anesthetic episode. Recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and after anesthesia for determination of serum creatine kinase activity and plasma propofol concentration.

Results—Anesthetic induction and maintenance were unremarkable in all horses. Compared with administration of saline solution, postanesthetic administration of propofol and xylazine resulted in an increased interval to emergence from anesthesia but improved quality of recovery-related transition to standing. Compared with administration of saline solution, administration of propofol also delayed the rate of decrease of end-tidal concentrations of desflurane and carbon dioxide and added to conditions promoting hypoxemia and hypoventilation.

Conclusions and Clinical Relevance—Propofol and xylazine administered IV to horses after 4 hours of desflurane anesthesia improved the quality of transition from lateral recumbency to standing but added potential for harmful respiratory depression during the postanesthetic period.

Full access
in American Journal of Veterinary Research