Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Curtis A. Barden x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate whether the effects of oxidative stress could be attenuated in cultures of canine lens epithelial cells (LECs) by incubation with grape seed proanthocyanidin extract (GSE), resveratrol (RES), or a combination of both (GSE+RES).

Sample Population—Primary cultures of canine LECs.

Procedures—LECs were exposed to 100MM tertiary butyl-hydroperoxide (TBHP) with or without GSE, RES, or GSE+RES. The dichlorofluorescein assay was used to detect production of reactive oxygen species (ROS), and immunoblot analysis was used to evaluate the expression of stress-induced cell-signaling markers (ie, the mitogen-activated protein kinase [MAPK] and phosphoinositide-3 kinase [PI3K] pathways).

Results—GSE and GSE+RES significantly reduced ROS production after a 30-minute exposure to TBHP. Only GSE significantly reduced ROS production after a 120-minute exposure to TBHP. Incubation with GSE reduced TBHP-induced activity of the MAPK and PI3K pathways.

Conclusions and Clinical Relevance—GSE inhibited key components associated with cataractogenesis, ROS production, and stress-induced cell signaling. On the basis of the data reported here, there is strong evidence that GSE could potentially protect LECs from the damaging effects of oxidative stress.

Full access
in American Journal of Veterinary Research


Objective—To determine the role of intraocular bacteria in the pathogenesis of equine recurrent uveitis (ERU) in horses from the southeastern United States by evaluating affected eyes of horses with ERU for bacterial DNA and intraocular production of antibodies against Leptospira spp.

Sample Population—Aqueous humor, vitreous humor, and serum samples of 24 clinically normal horses, 52 horses with ERU, and 17 horses with ocular inflammation not associated with ERU (ie, non-ERU inflammation).

Procedures—Ribosomal RNA quantitative PCR (real-time PCR) assay was used to detect bacterial DNA in aqueous humor and vitreous humor from clinically normal horses (n = 12) and horses with chronic (> 3-month) ERU (28). Aqueous humor and serum were also evaluated for anti-Leptospira antibody titers from clinically normal horses (n = 12), horses with non-ERU inflammation (17), and horses with confirmed chronic ERU (24).

Results—Bacterial DNA was not detected in aqueous humor or vitreous humor of horses with ERU or clinically normal horses. No significant difference was found in titers of anti-Leptospira antibodies in serum or aqueous humor among these 3 groups. Only 2 horses, 1 horse with ERU and 1 horse with non-ERU inflammation, had definitive intraocular production of antibodies against Leptospira organisms.

Conclusions and Clinical Relevance—In horses from the southeastern United States, Leptospira organisms may have helped initiate ERU in some, but the continued presence of the organisms did not play a direct role in the pathogenesis of this recurrent disease.

Full access
in American Journal of Veterinary Research