Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Crisanta Cruz-Espindola x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the pharmacokinetics of tramadol and its metabolites O-desmethyltramadol (ODT) and N-desmethyltramadol (NDT) in adult horses.

Animals—12 mixed-breed horses.

Procedures—Horses received tramadol IV (5 mg/kg, over 3 minutes) and orally (10 mg/kg) with a 6-day washout period in a randomized crossover design. Serum samples were collected over 48 hours. Serum tramadol, ODT, and NDT concentrations were measured via high-performance liquid chromatography and analyzed via noncompartmental analysis.

Results—Maximum mean ± SEM serum concentrations after IV administration for tramadol, ODT, and NDT were 5,027 ± 638 ng/mL, 0 ng/mL, and 73.7 ± 12.9 ng/mL, respectively. For tramadol, half-life, volume of distribution, area under the curve, and total body clearance after IV administration were 2.55 ± 0.88 hours, 4.02 ± 1.35 L/kg, 2,701 ± 275 h•ng/mL, and 30.1 ± 2.56 mL/min/kg, respectively. Maximal serum concentrations after oral administration for tramadol, ODT, and NDT were 238 ± 41.3 ng/mL, 86.8 ± 17.8 ng/mL, and 159 ± 20.4 ng/mL, respectively. After oral administration, half-life for tramadol, ODT, and NDT was 2.14 ± 0.50 hours, 1.01 ± 0.15 hours, and 2.62 ± 0.49 hours, respectively. Bioavailability of tramadol was 9.50 ± 1.28%. After oral administration, concentrations achieved minimum therapeutic ranges for humans for tramadol (> 100 ng/mL) and ODT (> 10 ng/mL) for 2.2 ± 0.46 hours and 2.04 ± 0.30 hours, respectively.

Conclusions and Clinical Relevance—Duration of analgesia after oral administration of tramadol might be < 3 hours in horses, with ODT and the parent compound contributing equally.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate pharmaceutical characteristics (strength or concentration, accuracy, and precision), physical properties, and bacterial contamination of fluconazole compounded products.

SAMPLE Fluconazole compounded products (30- and 240-mg capsules; 30- and 100-mg/mL oral suspensions) from 4 US veterinary compounding pharmacies.

PROCEDURES Fluconazole compounded products were ordered 3 times from each of 4 pharmacies at 7- or 10-day intervals. Generic fluconazole products (50- and 200-mg tablets; 10- and 40-mg/mL oral suspensions) served as references. Compounded products were evaluated at the time of receipt; suspensions also were evaluated 3 months later and at beyond-use dates. Evaluations included assessments of strength (concentration), accuracy, precision, physical properties, and bacterial contamination. Acceptable accuracy was defined as within ± 10% of the labeled strength (concentration) and acceptable precision as within ± 10%. Fluconazole was quantified by use of high-performance liquid chromatography.

RESULTS Physical characteristics of compounded products differed among pharmacies. Aerobic bacterial cultures yielded negative results. Capsules (30 and 240 mg) had acceptable accuracy (median, 96.3%; range, 87.3% to 135.2%) and precision (mean ± SD, 7.4 ± 6.0%). Suspensions (30 and 100 mg/mL) had poor accuracy (median, 73.8%; range, 53.9% to 95.2%) and precision (mean ± SD, 15.0 ± 6.9%). Accuracy and precision were significantly better for capsules than for suspensions.

CONCLUSIONS AND CLINICAL RELEVANCE Fluconazole compounded products, particularly suspensions, differed in pharmaceutical and physical qualities. Studies to evaluate the impact of inconsistent quality on bioavailability or clinical efficacy of compounded fluconazole products are indicated, and each study should include data on the quality of the compounded product evaluated.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine antibiotic levels in plasma and interstitial fluid (ISF) after SC placement of compounded florfenicol (FF) calcium sulfate beads (CSBs) in New Zealand White rabbits (Oryctolagus cuniculus).

ANIMALS

6 juvenile female rabbits (n = 5 treatment and 1 control).

METHODS

An ultrafiltration probe and CSBs were placed SC in 6 rabbits (n = 5 for FF CSBs and 1 for control CSBs). Plasma (3, 6, 12, 24, and 48 hours and 7, 14, and 21 days) and ISF (daily for 21 days) samples were collected, and FF was measured by HPLC for pharmacokinetic analysis. Hematology, biochemistry, and histopathology were assessed.

RESULTS

Means ± SD for the area under the curve, maximum concentration, time of maximum concentration, terminal half-life, and mean residence time to the last data point for plasma and ISF were 16.63 ± 8.16 and 17,902 ± 7,564 h·µg/mL, 0.79 ± 0.38 and 245 ± 223 µg/mL, 2.90 ± 0.3 and 59 ± 40 hours, 30.81 ± 16.9 and 27.3 ± 9.39 hours, 23.4 ± 10 and 73.7 ± 13 hours, respectively. Plasma FF was < 2 µg/mL at all time points. The ISF FF remained > 8 μg/mL for 109.98 to 231.58 hours. One rabbit death occurred during treatment, but the cause of death was undetermined. Local tissue inflammation was present, but no clinically significant systemic adverse effects were found on hematology, biochemistry, or histopathology in the remaining rabbits.

CLINICAL RELEVANCE

Florfenicol CSBs maintained antibiotic concentrations in ISF at levels likely to be effective against bacteria sensitive to > 8 µg/mL for 5 to 10 days while maintaining low (< 2 µg/mL) plasma levels. Florfenicol CSBs may be effective for local antibiotic treatment in rabbit abscesses.

Open access
in American Journal of Veterinary Research