Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Claudio C. Natalini x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the effects of epidural administration of hydromorphone on avoidance threshold to noxious electrical stimulation of the perineal, sacral, lumbar, and thoracic regions in horses.

Animals—6 healthy adult horses.

Procedure—Horses were assigned to receive hydromorphone (0.04 mg/kg) or a control solution (20 mL of sterile water) administered epidurally into in the first intercoccygeal space. Treatments were administered at time intervals of ≥ 7 days. Electrical stimulation was applied for 6 hours after epidural injection over the dermatomes of the perineal, sacral, lumbar, and thoracic regions, and the avoidance threshold voltage was recorded.

Results—Administration of sterile water did not change the avoidance threshold. Hydromorphone significantly increased the avoidance threshold by 20 minutes after injection, which lasted until 250 minutes after epidural administration in the perineal, sacral, lumbar, and thoracic regions. Profound analgesia (avoidance threshold > 40 V) was achieved only in the perineal region at 60 minutes after epidural administration of hydromorphone. Analgesia for all dermatomes was considered moderate for 250 minutes after epidural injection.

Conclusions and Clinical Relevance—Epidural administration of hydromorphone increases the avoidance threshold to noxious electrical stimulation in the perineal, lumbar, sacral, and thoracic regions in horses for 250 minutes after injection. Hydromorphone epidural administration may prove useful in the management of horses with pain of moderate to mild intensity.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate and compare effects of epidurally administered morphine, alfentanil, butorphanol, tramadol, and U50488H on avoidance threshold to noxious electrical stimulation over the dermatomes of the perineal, sacral, lumbar, and thoracic regions in horses.

Animals—5 healthy adult horses.

Procedure—Using a Latin square complete repeatedmeasures design, horses were randomly assigned to receive 1 of 6 treatments (morphine, alfentanil, butorphanol, tramadol, U50488H, or sterile water) at intervals of at least 7 days. Agents were injected epidurally at the first intercoccygeal epidural space, and electrical stimulation was applied at repeated intervals for 24 hours to the dermatomes of the perineal, sacral, lumbar, and thoracic regions. Avoidance threshold to electrical stimulation was recorded.

Results—Administration of butorphanol, U50488H, and sterile water did not induce change in avoidance threshold. Alfentanil increased avoidance threshold during the first 4 hours, but not significantly. Tramadol and morphine significantly increased threshold and analgesic effects. Complete analgesia (avoidance threshold, > 40 V) in the perineal and sacral areas was achieved 30 minutes after tramadol injection, compared with 6 hours after morphine injection. Duration of complete analgesia was 4 hours and 5 hours after tramadol and morphine injections, respectively.

Conclusions and Clinical Relevance—Epidural administration of tramadol and morphine induces long-lasting analgesia in healthy adult horses. Epidural administration of opioids may provide long-lasting analgesia in horses without excitation of the CNS. (Am J Vet Res 2000;61:1579–1586)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of subarachnoidally administered hyperbaric morphine, buprenorphine, and methadone on avoidance threshold to noxious electrical stimulation of the perineal, sacral, lumbar, and thoracic regions in horses.

Animals—6 healthy adult horses.

Procedures—Horses were assigned to receive subarachnoid administration of hyperbaric morphine (0.01 mg/kg), buprenorphine (0.001 mg/kg), methadone (0.01mg/kg), or 10% dextrose solution in equal volumes (5 mL). Electrical stimulation was applied every 10 minutes for 60 minutes and every 30 minutes for 120 minutes after subarachnoid injection over the dermatomes of the perineal, sacral, lumbar, and thoracic regions, and the avoidance threshold voltage was recorded. Heart and respiratory rate, blood gas tensions, serum electrolyte concentrations, and sedative effects were also evaluated.

Results—Administration of 10% dextrose solution did not change the avoidance threshold. Morphine and methadone significantly increased the avoidance threshold by 10 minutes after injection, which lasted until 120 minutes after subarachnoid administration in the perineal, sacral, lumbar, and thoracic regions. Profound analgesia (avoidance threshold > 40 V) was achieved in all regions. Buprenorphine also significantly increased the avoidance threshold by 10 minutes (36 V) after injection, which lasted 60 minutes and was considered moderate. Heart rate, blood pressure, respiratory rate, and blood gas tensions stayed within reference range. No ataxia, signs of sedation, or CNS excitement were observed.

Conclusions and Clinical Relevance—Subarachnoid administration of hyperbaric morphine or methadone produces intense analgesia for 120 minutes over the dermatomes of the perineal, sacral, lumbar, and thoracic areas without cardiorespiratory depression, ataxia, or CNS excitement in horses.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To develop a high-resolution melting (HRM) assay to detect the g.66493737C>T polymorphism in the myostatin gene (MSTN) and determine the frequency of 3 previously defined g.66493737 genotypes (T/T, T/C, and C/C) in warmblood horses.

SAMPLES Blood samples from 23 horses.

PROCEDURES From each blood sample, DNA was extracted and analyzed by standard PCR methods and an HRM assay to determine the MSTN genotype. Three protocols (standard protocol, protocol in which a high-salt solution was added to the reaction mixture before the first melting cycle, and protocol in which an unlabeled probe was added to the reaction mixture before analysis) for the HRM assay were designed and compared. Genotype results determined by the HRM protocol that generated the most consistent melting curves were compared with those determined by sequencing.

RESULTS The HRM protocol in which an unlabeled probe was added to the reaction mixture generated the most consistent melting curves. The genotypes of the g.66493737C>T polymorphism were determined for 22 horses (16 by HRM analysis and 20 by sequencing); 14, 7, and 1 had the T/T, T/C, and C/C genotypes, respectively. The genotype determined by HRM analysis agreed with that determined by sequencing for 14 of 16 horses. The frequency of alleles T and C was 79.5% and 20.5%, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HRM analysis may be a faster and more economical alternative than PCR methods for genotyping. Genotyping results might be useful as predictors of athletic performance for horses.

Full access
in American Journal of Veterinary Research