Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Claude A. Piché x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the clinical and endocrine responses of ferrets with adrenocortical disease (ACD) to treatment with a slow-release implant of deslorelin acetate.

Animals—15 ferrets with ACD.

Procedure—Ferrets were treated SC with a single slow-release, 3-mg implant of deslorelin acetate. Plasma estradiol, androstenedione, and 17-hydroxyprogesterone concentrations were measured before and after treatment and at relapse of clinical signs; at that time, the adrenal glands were grossly or ultrasonographically measured and affected glands that were surgically removed were examined histologically.

Results—Compared with findings before deslorelin treatment, vulvar swelling, pruritus, sexual behaviors, and aggression were significantly decreased or eliminated within 14 days of implantation; hair regrowth was evident 4 to 6 weeks after treatment. Within 1 month of treatment, plasma hormone concentrations significantly decreased and remained decreased until clinical relapse. Mean time to recurrence of clinical signs was 13.7 ± 3.5 months (range, 8.5 to 20.5 months). In 5 ferrets, large palpable tumors developed within 2 months of clinical relapse; 3 of these ferrets were euthanatized because of adrenal gland tumor metastasis to the liver or tumor necrosis.

Conclusions and Clinical Relevance—In ferrets with ACD, a slow-release deslorelin implant appears promising as a treatment to temporarily eliminate clinical signs and decrease plasma steroid hormone concentrations. Deslorelin may not decrease adrenal tumor growth in some treated ferrets. Deslorelin implants may be useful in the long-term management of hormone-induced sequelae in ferrets with ACD and in treatment of animals that are considered at surgical or anesthetic risk. (Am J Vet Res 2005;66:910–914)

Full access
in American Journal of Veterinary Research


Objective—To evaluate the potential utility of poly(D,L-lactic-co-glycolic)acid (PLGA) as a long-acting biodegradable drug delivery matrix for ivermectin used in the prevention of heartworm disease in dogs.

Animals—30 adult female dogs.

Procedure—Microparticle formulations containing 25 weight percent (wt%), 35 wt%, and 50 wt% ivermectin were prepared by an oil-in-water emulsion technique with solvent extraction into excess water. A fourth formulation, consisting of a mixture of 15 wt% and 50 wt% ivermectin microparticles, was blended in a 1:1 ratio to result in a 32.5 wt% ivermectin formulation. Formulations were administered once on Day 0 to groups of 6 dogs at a dose of 0.5 mg of ivermectin/ kg, SC. Half of the dogs in each treatment group and 3 untreated control dogs were infected with Dirofilaria immitis larvae 121 and 170 days after treatment. Six months after infection, dogs were euthanatized and necropsies were performed. Pharmacokinetics and efficacy were investigated.

Results—Analysis of pharmacokinetic data revealed sustained release of ivermectin during at least 287 days in 3 distinct phases: a small initial peak, followed by release of drug through diffusion, and polymer degradation. Untreated control dogs were all infected with heartworms. Heartworms were not found in any of the dogs in the ivermectin-PLGA treated groups. Adverse clinical signs were not observed.

Conclusions and Clinical Relevance—All formulations were 100% effective in preventing development of adult heartworms. Results indicate that PLGA microparticles are a promising drug delivery matrix for use with ivermectin for the prevention of heartworm disease for at least 6 months after treatment. (Am J Vet Res 2004;65:752–757)

Full access
in American Journal of Veterinary Research