Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Christopher D. Calloway x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine whether vaccinating cows during late gestation against Mycoplasma bovis will result in adequate concentrations of M bovis–specific IgG1 in serum, colostrum, and milk.

Animals—78 dairy cows.

Procedures—Serum samples were obtained 60 and 39 days prior to expected parturition in vaccinated and control cows from a single herd. Serum and colostrum samples were also obtained at parturition. Milk samples were obtained 7 to 14 days after parturition. Samples were analyzed for anti–M bovis IgG1 concentrations.

Results—Prior to vaccination, control and vaccinated cows had similar anti–M bovis IgG1 concentrations. After initial vaccination and subsequent booster and at parturition, there was a significant difference between the 2 groups, with vaccinated cows having higher IgG concentrations. Colostrum from vaccinated cows had higher anti–M bovis IgG1 concentrations, compared with control cows; however, IgG1 concentrations in milk did not differ between the 2 groups.

Conclusions and Clinical Relevance—Vaccination of late-gestation cows resulted in increased concentrations of anti–M bovis IgG1 in colostrum. However, ingestion of colostrum by calves may not guarantee protection against M bovis infection.

Full access
in American Journal of Veterinary Research


Objective—To evaluate 3 refractometers for detection of failure of passive transfer (FPT) of immunity in calves, and assess the effect of refractometric test endpoints on sensitivity, specificity, and proportion of calves classified correctly with regard to passive transfer status.

Design—Prospective study.

Animals—90 calves.

Procedure—Blood samples were obtained from calves that were < 10 days old. Serum IgG concentration was determined by use of a radial immunodiffusion assay. Accuracy of 3 refractometers in the prediction of serum IgG concentration was determined by use of standard epidemiologic methods and a linear regression model.

Results—At a serum protein concentration test endpoint of 5.2 g/dL, sensitivity of each refractometer was 0.89 or 0.93, and specificity ranged from 0.80 to 0.91. For all refractometers, serum protein concentration test endpoints of 5.0 or 5.2 g/dL resulted in sensitivity > 0.80, specificity > 0.80, and proportion of calves classified correctly > 0.85. Serum protein concentrations equivalent to 1,000 mg of IgG/dL of serum were 4.9, 4.8, and 5.1 g/dL for the 3 refractometers.

Conclusions and Clinical Relevance—The refractometers, including a nontemperature-compensating instrument, performed similarly in detection of FPT. Serum protein concentration test endpoints of 5.0 and 5.2 g/dL yielded accurate results in the assessment of adequacy of passive transfer; lower or higher test endpoints misclassified larger numbers of calves. (J Am Vet Med Assoc 2002;221:1605–1608)

Full access
in Journal of the American Veterinary Medical Association