Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Christophe Céleste x
- Refine by Access: All Content x
Abstract
Objective—To evaluate the effects of continuous oral administration of phenylbutazone on serum and synovial fluid biomarkers of skeletal matrix metabolism in horses.
Animals—11 adult female horses without clinical or radiographic evidence of joint disease.
Procedures—Horses were randomly assigned to control or treatment groups. Phenylbutazone was administered orally twice daily at a dose of 4.4 mg/kg for 3 days to the treatment group and subsequently at a dose of 2.2 mg/kg for 7 days. Serum and radiocarpal synovial fluid samples were obtained at baseline and thereafter at regular intervals for 4 weeks. Biomarkers of cartilage aggrecan synthesis (chondroitin sulfate 846) and type II collagen synthesis (procollagen type II C-propeptide) and degradation (collagen type II cleavage) were assayed. Biomarkers of bone synthesis (osteocalcin) and resorption (C-terminal telopeptide of type I collagen) were also measured.
Results—No significant differences were found between control and treatment groups or temporally for the biomarkers chondroitin sulfate 846, procollagen type II C-propeptide, collagen type II cleavage, and C-terminal telopeptide of type I collagen in serum or synovial fluid. A significant increase in osteocalcin concentration occurred in synovial fluid during treatment in the treated group. No treatment effect was detected for serum osteocalcin concentration.
Conclusions and Clinical Relevance—Results suggested that continuous phenylbutazone administration at recommended doses altered some biomarkers in healthy equine joints after short periods of administration. Increased osteocalcin concentration may indicate an undetermined anabolic effect of phenylbutazone administration on periarticular bone or transient induction of osteogenesis in articular chondrocytes or a mesenchymal subpopulation of synoviocytes.
Abstract
Objective—To determine the effect of a silicone dressing on the rate and quality of repair of limb wounds and compare microvascular occlusion and apoptosis in wounds treated with the silicone dressing and those treated with a conventional dressing in horses.
Animals—5 horses.
Procedure—Horses received two 6.25-cm2 wounds on each metacarpus. Ten wounds were treated with a silicone dressing; the other 10 were treated with a control dressing. Quality of repair and wound size were evaluated at each bandage change. Time to healing and the number of excisions of exuberant granulation tissue were recorded. Biopsy specimens taken from healed wounds were evaluated semiquantitatively via histologic examination, p53 immunohistochemical analysis, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) to quantify apoptosis, and electron microscopic examination to measure microvessel luminal diameters.
Results—The silicone dressing surpassed the conventional dressing in preventing formation of exuberant granulation tissue and improving tissue quality. Microvessels were occluded significantly more often in wounds dressed with the silicone gel, which also diminished the expression of mutant p53, an indirect inhibitor of apoptosis, although greater apoptosis was not confirmed quantitatively by use of TUNEL.
Conclusions and Clinical Relevance—Because the silicone dressing inhibited the formation of exuberant granulation tissue, it may be integrated in a management strategy designed to improve the repair of limb wounds in horses. (Am J Vet Res 2005;66:1133–1139)