Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Christina S. Barr x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether neurologic examination findings, results of CSF analysis, or age at the onset of seizures could be used to predict whether results of magnetic resonance imaging (MRI) would be normal or abnormal in dogs with seizures.

Design—Retrospective study.

Animals—115 dogs.

Procedure—Information on results of neurologic examination, results of CSF analysis, age at the onset of seizures, and results of MRI was obtained from the medical records.

Results—Results of MRI were abnormal in 61 dogs and normal in 54. Sensitivity and specificity of neurologic examination alone were 77 (47/61) and 91% (49/54), respectively. Sensitivity and specificity of CSF analysis alone were 79 (48/61) and 69% (37/54), respectively. Results of MRI were abnormal for 12 of 28 (43%) dogs with abnormal CSF analysis results and normal neurologic examination results but for only 2 of 35 (6%) dogs with normal CSF analysis and normal neurologic examination results. Similarly, results of MRI were abnormal for 36 of 37 (97%) dogs with abnormal CSF analysis and abnormal neurologic examination results but for only 11 of 15 (73%) dogs with normal CSF analysis results and abnormal neurologic examination results. Age at the onset of seizures (< 6 vs ≥ 6 years old) was not significantly associated with results of MRI.

Conclusions and Clinical Relevance—Results suggest that neurologic examination findings and results of CSF analysis are useful in predicting whether results of MRI will be abnormal in dogs examined because of seizures, but age at the onset of seizures is not. (J Am Vet Med Assoc 2002;220:781–784)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the distribution for limbs and bones in horses with fractures of the proximal sesamoid bones and relationships with findings on palmarodorsal radiographic images.

Sample Population—Proximal sesamoid bones obtained from both forelimbs of cadavers of 328 racing Thoroughbreds.

Procedure—Osteophytes; large vascular channels; and fracture location, orientation, configuration, and margin distinctness were categorized by use of high-detail contact palmarodorsal radiographs. Distributions of findings were determined. Relationships between radiographic findings and fracture characteristics were examined by use of χ2 and logistic regression techniques.

Results—Fractures were detected in 136 (41.5%) horses. Biaxial fractures were evident in 109 (80%) horses with a fracture. Osteophytes and large vascular channels were evident in 266 (81%) and 325 (99%) horses, respectively. Medial bones typically had complete transverse or split transverse simple fractures, indistinct fracture margins, > 1 vascular channel that was > 1 mm in width, and osteophytes in abaxial wing and basilar middle or basilar abaxial locations. Lateral bones typically had an oblique fracture and distinct fracture margins. Odds of proximal sesamoid bone fracture were approximately 2 to 5 times higher in bones without radiographic evidence of osteophytes or large vascular channels, respectively.

Conclusions and Clinical Relevance—Biaxial fractures of proximal sesamoid bones were common in cadavers of racing Thoroughbreds. Differences between medial and lateral bones for characteristics associated with fracture may relate to differences in fracture pathogeneses for these bones. Osteophytes and vascular channels were common findings; however, fractures were less likely to occur in bones with these features.

Full access
in American Journal of Veterinary Research