Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chris C. Pollitt x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine solar load-bearing structures in the feet of feral horses and investigate morphological characteristics of the sole in feral horses and domestic Thoroughbreds.

Sample—Forelimbs from cadavers of 70 feral horses and 20 domestic Thoroughbreds in Australia.

Procedures—Left forefeet were obtained from 3 feral horse populations from habitats of soft substrate (SS [n = 10 horses]), hard substrate (HS [10]), and a combination of SS and HS (10) and loaded in vitro. Pressure distribution was measured with a pressure plate. Sole depth was measured at 12 points across the solar plane in feet obtained from feral horses from SS (n = 20 horses) and HS (20) habitats and domestic Thoroughbreds (20).

Results—Feet of feral horses from HS habitats loaded the periphery of the sole and hoof wall on a flat surface. Feral horses from HS or SS habitats had greater mean sole depth than did domestic Thoroughbreds. Sole depth was greatest peripherally and was correlated with the loading pattern.

Conclusions and Clinical Relevance—The peripheral aspect of the sole in the feet of feral horses had a load-bearing function. Because of the robust nature of the tissue architecture, the hoof capsule of feral horses may be less flexible than that of typical domestic horses. The application of narrow-web horseshoes may not take full advantage of the load-bearing and force-dissipating properties of the peripheral aspect of the sole. Further studies are required to understand the effects of biomechanical stimulation on the adaptive responses of equine feet.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effect of various environmental conditions on the degree of hydration in hoof wall horn tissue from feral horses and investigate the effect of short-term foot soaking on moisture content in hoof wall and sole tissue in domestic horses.

Animals—40 feral horses from 3 environments (wet and boggy [n = 10], partially flooded [20], and constantly dry desert [10]) and 6 nonferal Quarter Horses.

Procedures—The percentage of moisture content of hoof wall samples from feral horses was measured in vitro. In a separate evaluation, the percentage of moisture content of hoof wall and sole tissue was measured in the dry and soaked forefeet of Quarter Horses.

Results—Mean ± SD percentage of moisture content was 29.6 ± 5.1%, 29.5 ± 5.8%, and 29.5 ± 2.9% for feral horses from the wet and boggy, partially flooded, and constantly dry desert environments, respectively. Moisture content did not differ among the 3 groups, nor did it differ between dry and soaked hoof wall samples from nonferal horses. However, soaking in water for 2 hours resulted in a significant increase in the percentage of moisture content of the sole.

Conclusions and Clinical Relevance—Environmental conditions do not appear to affect moisture content in the hoof wall horn. Soaking horses' feet regularly in water would be unlikely to change the degree of hydration in the hoof wall horn but may further hydrate the sole.

Full access
in American Journal of Veterinary Research