Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Cheyenne J. Cannarozzo x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To elucidate the cardiovascular effects of escalating doses of phenylephrine and norepinephrine in dogs receiving acepromazine and isoflurane.

ANIMALS

8 beagles aged 1 to 2 years (7.4 to 11.2 kg).

METHODS

All dogs received acepromazine 0.01 mg/kg, propofol 4 to 5 mg/kg, and isoflurane and were mechanically ventilated. Mean arterial pressure (MAP) from a femoral artery catheter and continuous electrocardiogram were recorded. Cardiac output (CO) was measured with transpulmonary thermodilution. Systemic vascular resistance (SVR), global end-diastolic volume (GEDV), and global ejection fraction (GEF) were subsequently calculated. Phenylephrine and norepinephrine were infused in random order at 0.07, 0.3, 0.7, and 1.0 μg/kg/min. All variables were measured after 15 minutes of each infusion rate. The effects of dose, agent, and their interaction on the change of each variable were evaluated with mixed-effect models. A P < .05 was used for significance.

RESULTS

Atrial premature complexes occurred in 3 dogs during norepinephrine infusion at doses of 0.3, 0.7, and 1 μg/kg/min; no dysrhythmias were seen with phenylephrine administration. MAP increased during dose escalation (P < .0001) within each agent and did not differ between agents (P = .6). The decrease in HR was greater for phenylephrine (P < .0001). Phenylephrine decreased CO and GEF and increased GEDV and SVR (all P < .03). Norepinephrine decreased the SVR and increased CO, GEDV, and GEF (all P < .03).

CLINICAL RELEVANCE

Our results confirm that phenylephrine increases arterial pressures mainly through vasoconstriction in acepromazine-premedicated dogs while norepinephrine, historically considered a vasopressor, does so primarily through an increase in inotropism.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To describe the acquisition and pitfalls of a 3-view transesophageal echocardiography (TEE) protocol in anesthetized, dorsally recumbent dogs.

ANIMALS

8 beagles, 1 to 2 years old, 7.4 to 11.2 kg.

METHODS

Dogs were anesthetized, mechanically ventilated, and placed in dorsal recumbency. A TEE probe was advanced, and 3 views were performed: midesophageal 4-chamber and long axis (ME 4C and ME LAX) and caudal esophageal short axis (CE SAX) at the level of the papillary muscles. Probe insertion depth, flexion, omniplane angle, and image acquisition time were recorded. Two observers assessed 24 video clips each and identified anatomical structures.

RESULTS

The ME 4C and ME LAX were obtained at 35 (30 to 40) cm insertion depth, omniplane at 0° and 103° (90 to 116), respectively. Views were obtained in ≤30 seconds once the TEE was in the cervical esophagus. Left-sided structures were identified in all cases, whereas right-sided structures were not always simultaneously obtained in the ME 4C, requiring further probe manipulation. All structures were identified on ME LAX. CE SAX was obtained at 40 (35 to 45) cm, omniplane at 0°, and in 15 (10 to 90) seconds. A true SAX view (circular left ventricle at the level of papillary muscles) could not be obtained in all dogs.

CLINICAL RELEVANCE

A 3-view TEE protocol using core views as those described in humans may be applicable to dogs under general anesthesia and in dorsal recumbency. The CE SAX view at the level of the papillary muscles appears more difficult to obtain with consistency than midesophageal views.

Open access
in American Journal of Veterinary Research