Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Cheri Nielsen x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare fit and geometry of reconstruction of femoral components of 4 canine cemented total hip replacement implants and determine which implants are most compatible with current principles of cemented arthroplasty.

Sample Population—Paired femurs from 16 adult mixed-breed dogs.

Procedure—Femurs were prepared for femoral stem implantation of either the Bardet, BioMedtrix, Mathys, or Richards II implant. Mediolateral and craniocaudal radiographs were obtained with femoral components in situ. Cross-sectional analysis of implant fit was performed on transected cemented specimens. Computer-aided analyses of digitized images were performed.

Results—The Bardet and Richards II implants reconstructed the original femoral head position significantly better than the other 2 implants. None of the implants allowed neutralization of the implant axis in the sagittal plane or were routinely centralized in the femoral canal. The Bardet implant had the smallest minimum distal tip offset in the sagittal plane. Greatest tip to cortex distance was provided by the Richards II implant in the transverse plane and the Mathys implant in the sagittal plane. The thinnest cement mantle regions for all implants were in the central longitudinal third of the femoral stem.

Conclusions and Clinical Relevance—The Bardet and BioMedtrix implants had stem design characteristics that were most compatible with principles of cemented stem fixation. None of the implants completely satisfied the theoretically optimal conditions of centralization and neutralization of the femoral stem. Innovative design modifications, therefore, may be needed if these conditions are important to the longterm success of canine total hip replacement. (Am J Vet Res 2000;61:1113–1121)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To calculate normative joint angle, intersegmental forces, moment of force, and mechanical power at elbow, antebrachiocarpal, and metacarpophalangeal joints of dogs at a walk.

Animals—6 clinically normal mixed-breed dogs.

Procedure—Kinetic data were collected via a force platform, and kinematic data were collected from forelimbs by use of 3-dimensional videography. Length, location of the center of mass, total mass, and mass moment of inertia about the center of mass were determined for each of 4 segments of the forelimb. Kinematic data and inertial properties were combined with vertical and craniocaudal ground reaction forces to calculate sagittal plane forces and moments across joints of interest throughout stance phase. Mechanical power was calculated as the product of net joint moment and the angular velocity. Joint angles were calculated directly from kinematic data.

Results—All joint intersegmental forces were similar to ground reaction forces, with a decrease in magnitude the more proximal the location of each joint. Flexor moments were observed at metacarpophalangeal and antebrachiocarpal joints, and extensor moments were observed at elbow and shoulder joints, which provided a net extensor support moment for the forelimb. Typical profiles of work existed for each joint.

Conclusions and Clinical Relevance—For clinically normal dogs of a similar size at a walk, inverse dynamic calculation of intersegmental forces, moments of force, and mechanical power for forelimb joints yielded values of consistent patterns and magnitudes. These values may be used for comparison in evaluations of gait in other studies and in treatment of dogs with forelimb musculoskeletal disease. (Am J Vet Res 2003;64:609–617)

Restricted access
in American Journal of Veterinary Research