Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Chand Khanna x
- Refine by Access: All Content x
Abstract
Necrotizing meningoencephalitis (NME) is a fatal neuroinflammatory disease that previously carried a uniformly grave prognosis. Our recent identification of a novel early form of NME in Pugs suggests that disease onset and progression are likely more insidious than previously recognized and provides new hope that early therapeutic intervention may halt disease progression and ultimately prevent or cure NME. This novel perspective also sheds new light on the clinical similarities to multiple sclerosis (MS) in humans and provides a rationale for cross-species translation. The history of recent scientific discoveries in NME and new parallels between MS and NME will be reviewed.
Abstract
OBJECTIVE
To evaluate the reliability of preoperative abdominal ultrasonography as a staging tool for dogs with hemoperitoneum due to presumed splenic tumor rupture, focusing on the detection of metastatic lesions in the liver.
ANIMALS
99 dogs from 20 emergency and specialty hospitals across the US.
METHODS
Dogs with nontraumatic hemoperitoneum secondary to splenic tumor rupture were included. A post hoc analysis was conducted on data from a nationwide prospective trial investigating novel treatments for canine hemangiosarcoma. The accuracy of preoperative staging was assessed by comparing ultrasonographic findings with intraoperative observations and histologic findings.
RESULTS
On preoperative ultrasonography, there was a 20% incidence of liver lesions identified, with no association to liver lesions seen during operation. Notably, 22% of liver lesions observed during operation were missed on preoperative ultrasonography. The presence of liver lesions on preoperative ultrasonography was associated with a higher likelihood of a benign splenic tumor diagnosis. There was no association between the identification of liver lesions on preoperative ultrasonography and the presence of metastatic disease on liver biopsy, with a sensitivity and specificity of 19% and 82%, respectively. Additionally, ultrasound had low sensitivity in detecting intra-abdominal lesions beyond the liver and spleen, with 82% of these lesions missed preoperatively.
CLINICAL RELEVANCE
This study challenges conventional perceptions around the approach to staging in dogs with hemoperitoneum. These findings advocate for a reevaluation of the staging approach, with more comprehensive modalities like whole-body CT or MRI potentially being more warranted.
Abstract
Objective—To determine clinical activity and toxic effects of ifosfamide when used to treat cats with vaccine-associated sarcoma (VAS).
Animals—27 cats with a nonresectable, recurrent, or metastatic VAS.
Procedure—Each cat received ifosfamide (900 mg/m2 of body surface area) as an IV infusion during a 30-minute period. Diuresis by infusion of saline (0.9% NaCl) solution and administration of mesna were used to prevent urothelial toxicosis. Treatments were administered every 3 weeks, and tumor response was assessed after the second treatment. All ifos-famide-associated toxic effects were graded in accordance with predetermined criteria.
Results—61 treatments were administered to 27 cats (median, 2 treatments/cat; range, 1 to 4 treat-ments/cat). After ifosfamide treatment, 1 cat had a complete response and 10 had partial responses for an overall response rate of 11 of 27 (41%; 95% confidence interval [CI], 25% to 59%). Responses lasted from 21 to 133 days (median, 70 days; 95% CI, 60 to 113 days). The acute dose-limiting toxicosis was neutropenia, which was detected 5 to 28 days (median, 7 days) after treatment. Median nadir neutrophil count was 1,600 cells/μL (range, 200 to 5,382 cells/μL). Nine (33%) cats had adverse gastrointestinal effects (primarily salivation during the ifosfamide infusion and inappetence after treatment). Two cats were euthanatized because of severe nephrotoxicosis, and 1 cat developed pulmonary edema during diuresis.
Conclusions and Clinical Relevance—Ifosfamide has antitumor activity against VAS in cats and is tolerated well by most cats. Ifosfamide should be evaluated as an adjuvant treatment for cats with VAS.
Objective—
To compare efficacy and toxicity of 2 multiagent chemotherapeutic protocols similar in all respects except that 1 incorporated dactinomycin and the other incorporated doxorubicin for treatment of dogs with malignant lymphoma.
Design—
Randomized controlled trial.
Animals—
45 dogs with malignant lymphoma.
Procedure—
Dogs were randomly assigned to a doxorubicin or dactinomycin treatment group. Time to first remission, duration of first remission, survival time, and prevalence of toxicoses, particularly number of episodes of dose-limiting neutropenia and gastrointestinal toxicoses, were compared between groups.
Results—
37 dogs received at least 1 dose of doxorubicin (21 dogs) or dactinomycin (16). Median time to first remission was not significantly different between groups, but median duration of first remission and median survival time were significantly longer for dogs in the doxorubicin treatment group than for dogs in the dactinomycin treatment group. Number of dogs that died, number of episodes of dose-limiting neutropenia, and number of episodes of gastrointestinal toxicoses were not significantly different between groups.
Clinical Implications—
A multiagent chemotherapeutic protocol incorporating doxorubicin was significantly more effective in dogs with malignant lymphoma than a similar protocol incorporating dactinomycin. Despite the lower cost and lack of cardiotoxicity, dactinomycin is not an equivalent substitute for doxorubicin in the initial treatment of dogs with malignant lymphoma. (J Am Vet Med Assoc 1998:213:985-990)
Abstract
OBJECTIVE To determine the pharmacokinetics of orally administered rapamycin in healthy dogs.
ANIMALS 5 healthy purpose-bred hounds.
PROCEDURES The study consisted of 2 experiments. In experiment 1, each dog received rapamycin (0.1 mg/kg, PO) once; blood samples were obtained immediately before and at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 hours after administration. In experiment 2, each dog received rapamycin (0.1 mg/kg, PO) once daily for 5 days; blood samples were obtained immediately before and at 3, 6, 24, 27, 30, 48, 51, 54, 72, 75, 78, 96, 96.5, 97, 98, 100, 102, 108, 120, 144, and 168 hours after the first dose. Blood rapamycin concentration was determined by a validated liquid chromatography–tandem mass spectrometry assay. Pharmacokinetic parameters were determined by compartmental and noncompartmental analyses.
RESULTS Mean ± SD blood rapamycin terminal half-life, area under the concentration-time curve from 0 to 48 hours after dosing, and maximum concentration were 38.7 ± 12.7 h, 140 ± 23.9 ng•h/mL, and 8.39 ± 1.73 ng/mL, respectively, for experiment 1, and 99.5 ± 89.5 h, 126 ± 27.1 ng•h/mL, and 5.49 ± 1.99 ng/mL, respectively, for experiment 2. Pharmacokinetic parameters for rapamycin after administration of 5 daily doses differed significantly from those after administration of 1 dose.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of low-dose (0.1 mg/kg) rapamycin to healthy dogs achieved blood concentrations measured in nanograms per milliliter. The optimal dose and administration frequency of rapamcyin required to achieve therapeutic effects in tumor-bearing dogs, as well as toxicity after chronic dosing, need to be determined.