Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Catherine T. Gunther-Harrington x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To determine the pharmacokinetics and potential adverse effects of pimobendan after oral administration in New Zealand White rabbits (Ocytolagus cuniculi).

ANIMALS

10 adult sexually intact (5 males and 5 females) rabbits.

PROCEDURES

2 pilot studies were performed with a pimobendan suspension or oral tablets. Eight rabbits received 7.5 mg of pimobendan (mean 2.08 mg/kg) suspended in a critical care feeding formula. Plasma concentrations of pimobendan and O-demethylpimobendan (ODMP) were measured, and pharmacokinetic parameters were calculated for pimobendan by noncompartmental analysis. Body weight, food and water consumption, mentation, urine, and fecal output were monitored.

RESULTS

Mean ± SD maximum concentration following pimobendan administration was 15.7 ± 7.54 ng/mL and was detected at 2.79 ± 1.25 hours. The half-life was 3.54 ± 1.32 hours. Plasma concentrations of pimobendan were detectable for up to 24 hours. The active metabolite, ODMP, was detected in rabbits for 24 to 36 hours. An adverse event occurred following administration of pimobendan in tablet form in 1 pilot study, resulting in death secondary to aspiration. No other adverse events occurred.

CLINICAL RELEVANCE

Plasma concentrations of pimobendan were lower than previously reported for dogs and cats, despite administration of higher doses, and had longer time to maximum concentration and half-life. Based on this study, 2 mg/kg of pimobendan in a critical care feeding formulation should maintain above a target plasma concentration for 12 to 24 hours. However, further studies evaluating multiple-dose administration as well as pharmacodynamic studies and clinical trials in rabbits with congestive heart failure are needed to determine accurate dose and frequency recommendations.

Restricted access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare serum cardiac troponin I (cTnI) concentrations between sea otters with and without cardiomyopathy and describe 2 cases of cardiomyopathy with different etiologies.

ANIMALS

25 free-ranging southern sea otters (Enhydra lutris nereis) with (n = 14; cases) and without (11; controls) cardiomyopathy and 17 healthy managed southern sea otters from aquariums or rehabilitation centers (controls).

PROCEDURES

Serum cTnI concentration was measured in live sea otters. Histopathologic and gross necropsy findings were used to classify cardiomyopathy status in free-ranging otters; physical examination and echocardiography were used to assess health status of managed otters. Two otters received extensive medical evaluations under managed care, including diagnostic imaging, serial cTnI concentration measurement, and necropsy.

RESULTS

A significant difference in cTnI concentrations was observed between cases and both control groups, with median values of 0.279 ng/mL for cases and < 0.006 ng/mL for free-ranging and managed controls. A cutoff value of ≥ 0.037 ng/mL yielded respective sensitivity and specificity estimates for detection of cardiomyopathy of 64.3% and 90.9% for free-ranging cases versus free-ranging controls and 64.3% and 94.1% for free-ranging cases versus managed controls.

CONCLUSIONS AND CLINICAL RELEVANCE

Cardiomyopathy is a common cause of sea otter death that has been associated with domoic acid exposure and protozoal infection. Antemortem diagnostic tests are needed to identify cardiac damage. Results suggested that serum cTnI concentration has promise as a biomarker for detection of cardiomyopathy in sea otters. Serial cTnI concentration measurements and diagnostic imaging are recommended to improve heart disease diagnosis in managed care settings.

Full access
in American Journal of Veterinary Research