Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Carolyn R. Brown x
  • Refine by Access: All Content x
Clear All Modify Search


Friction can occur between veterinarians and their clients when they are not aligned on the goals of care for a pet and what constitutes the best outcome of a case. Veterinarians frequently concentrate on providing the diagnostic and treatment protocol that is perceived to result in the best medical outcome for their patient. Pet owners frequently consider a myriad of factors relating to the pet as well as how different diagnostic and treatment recommendations will affect individual family members and the family as a whole in both concrete and subjective terms. This misalignment can lead to veterinarians experiencing moral distress and families feeling guilt and shame about their pet’s care decisions. In this paper we examine the interdependencies of families and their pets and the factors that pet owners may consider in making care decisions. These factors, adapted from the concept of Family Quality of Life as used in the human health field, can be divided into three domains including pet-centric factors, family-centric factors, and external factors. By better understanding that there are a multitude of considerations that influence owners’ care decisions and communicating with owners in a nonjudgmental manner, veterinarians can more holistically support families, decrease their own moral distress, and arrive at diagnostic and treatment plans that represent the overall best approach for the family and the patient.

Open access
in Journal of the American Veterinary Medical Association


Objective—To evaluate the microcrystalline sodium urate (MSU) method for inducing arthritis in parrots and to compare the analgesic efficacy of long-acting liposome-encapsulated butorphanol (LEBT), carprofen, or a combination of both.

Animals—20 Hispaniolan parrots.

Procedures—MSU was injected into a tibiotarsal-tarsometatarsal (intertarsal) joint to induce arthritis (time 0). Four treatments were compared (LEBT [15 mg/kg, SC] administered once at time 0; injections of carprofen [3 mg/kg, IM, q 12 h] starting at time 0; administration of LEBT plus carprofen; and a control treatment of saline [0.9% NaCl] solution). Weight load testing and behavioral scoring were conducted at 0, 2, 6, 26, and 30 hours.

Results—Injection of MSU into the intertarsal joint induced arthritis, which resolved within 30 hours. Treatment with LEBT or LEBT plus carprofen resulted in significantly greater weight-bearing load on the limb with induced arthritis, compared with the control treatment. Treatment with carprofen alone caused a slight but nonsignificant improvement in weight-bearing load on the arthritic limb, compared with the control treatment. Behaviors associated with motor activity and weight bearing differed between the control and analgesic treatments.

Conclusions and Clinical Relevance—Butorphanol was an effective treatment for pain associated with arthritis, but carprofen administered every 12 hours was insufficient. Injection of MSU to induce arthritis in a single joint was a good method for evaluating tonic pain in parrots, and measurement of the weight-bearing load was accurate for assessment of arthritic pain; however, behavioral changes associated with pain were subtle.

Full access
in American Journal of Veterinary Research


Objective—To evaluate injection of microcrystalline sodium urate (MSU) for inducing articular pain in green-cheeked conures (Pyrrhura molinae) and the analgesic efficacy of liposome-encapsulated butorphanol tartrate (LEBT) by use of weight load data, behavioral scores, and fecal corticosterone concentration.

Animals—8 conures.

Procedures—In a crossover study, conures were randomly assigned to receive LEBT (15 mg/kg) or liposomal vehicle subsequent to experimental induction of arthritis or sham injection. The MSU was injected into 1 tibiotarsal-tarsometatarsal (intertarsal) joint to induce arthritis (time 0). Weight-bearing load and behavioral scores were determined at 0, 2, 6, 26, and 30 hours.

Results—MSU injection into 1 intertarsal joint caused a temporary decrease in weight bearing on the affected limb. Treatment of arthritic conures with LEBT resulted in significantly more weight bearing on the arthritic limb than treatment with vehicle. Administration of vehicle to arthritic conures caused a decrease in activity and feeding behaviors during the induction phase of arthritis, but as the arthritis resolved, there was a significant increase in voluntary activity at 30 hours and feeding behaviors at 26 and 30 hours, compared with results for LEBT treatment of arthritic birds. Treatment with LEBT or vehicle in conures without arthritis resulted in similar measurements for weight bearing and voluntary and motivated behaviors.

Conclusions and Clinical Relevance—Experimental induction of arthritis in conures was a good method for evaluating tonic pain. Weight-bearing load was the most sensitive measure of pain associated with induced arthritis. Pain associated with MSU-induced arthritis was alleviated by administration of LEBT.

Full access
in American Journal of Veterinary Research


Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.

Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.

Conclusions and Clinical Relevanc e—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.

Full access
in American Journal of Veterinary Research


Objective—To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—10 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration.

Results—Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values.

Conclusions and Clinical Relevance—Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds.

Full access
in American Journal of Veterinary Research