Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Carol L. Rinehart x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the efficacy of vaccination with the Leptospira interrogans serovar hardjo type hardjoprajitno component of a pentavalent Leptospira bacterin against a virulent experimental challenge with Leptospira borgpetersenii serovar hardjo type hardjo-bovis strain 203 in cattle.

Animals—Fifty-five 6-month-old Holstein heifers.

Procedures—Heifers that were negative for persistent infection with bovine viral diarrhea virus determined via immunohistochemical testing and negative for Leptospira interrogans serovar pomona, Leptospira interrogans serovar hardjo, Leptospira interrogans serovar grippotyphosa, Leptospira interrogans serovar bratislava, Leptospira interrogans serovar canicola, and Leptospira interrogans serovar icterohaemorrhagiae determined via microscopic agglutination assay were enrolled in the study. Two heifers were separated and used for the challenge passage. The remaining heifers were vaccinated twice with a commercial pentavalent bacterin or a sham vaccine 21 days apart and subsequently challenged with L borgpetersenii serovar hardjo type hardjo-bovis strain 203. Urinary shedding, antibody titers, and clinical signs of leptospirosis infection were recorded for 8 weeks after challenge.

Results—Heifers that received the pentavalent bacterin did not shed the organism in urine after challenge and did not have renal colonization at necropsy. Heifers that were sham vaccinated shed the organism in urine and had renal colonization.

Conclusions and Clinical Relevance—Results provided evidence that a pentavalent Leptospira vaccine containing L interrogans serovar hardjo type hardjoprajitno can provide protection against challenge with L borgpetersenii serovar hardjo type hardjo-bovis strain 203. It is important to demonstrate cross-protection that is vaccine specific against disease-causing strains of organisms that are prevalent under field conditions.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV.

Design—Prospective study.

Animals—55 heifers.

Procedure—Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues.

Results—Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV.

Conclusions and Clinical Relevance—A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd. (J Am Vet Med Assoc 2004;225:1898–1904)

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To evaluate cell-mediated and humoral immune responses of calves receiving 2 doses of a dual-adjuvanted vaccine containing inactivated bovine herpesvirus type 1 (BHV1) and bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2) before and after exposure to BHV1.

ANIMALS 24 Holstein steers negative for anti-BHV1 antibodies and proliferative cell-mediated immune responses against BHV1 and BVDV.

PROCEDURES Calves were randomly assigned to 3 groups. The vaccinated group (n = 10) received 2 doses of vaccine on days 0 and 21. Control (n = 10) and seeder (4) groups remained unvaccinated. Calves were commingled during the study except for the 3-day period (days 53 to 55) when seeders were inoculated with BHV1 (1.04 × 107 TCID50, IV) to serve as a source of virus for challenge (days 56 through 84). Rectal temperature and clinical illness scores were monitored, and blood and nasal specimens were obtained for determination of clinicopathologic and immunologic variables.

RESULTS After BHV1 challenge, mean rectal temperature and clinical illness scores were lower for vaccinates than controls. In vaccinates, antibody titers against BHV1 and BVDV2, but not BVDV1, increased after challenge as did extracellular and intracellular interferon-γ expression, indicating a T helper 1 memory response. Additional results of cell marker expression were variable, with no significant increase or decrease associated with treatment.

CONCLUSIONS AND CLINICAL RELEVANCE Calves administered 2 doses of a killed-virus vaccine developed cell-mediated and humoral immune responses to BHV1 and BVDV, which were protective against disease when those calves were subsequently exposed to BHV1.

Full access
in American Journal of Veterinary Research