Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Brittany Papa x
  • Refine by Access: All Content x
Clear All Modify Search


This article, as part of the Currents in One Health series, reviews the current state of diagnostics for synovial sepsis. Synovial sepsis is a condition that affects veterinary and human medicine and requires coordinated efforts from both parties, as well as environmental considerations to accurately diagnose and preserve effective treatments. The article discusses best practices to identify the causative agent in septic synovitis, trends in bacterial identification and antimicrobial resistance patterns across common bacterial species, and a one-health perspective to optimize diagnostics across species. Antimicrobial resistance is a challenge facing both human and veterinary medicine and requires mindful and attentive prescribing to reduce the development of antimicrobial resistance and preserve antimicrobials for future application. The current standard of care for bacterial identification in veterinary practice is culture and antimicrobial susceptibility; however, positive culture rates from synovial sepsis cases often remain < 50%. Recent developments in advanced bacterial identification present opportunities for improved bacterial identification in synovial sepsis. Increased bacterial isolation will also help guide empirical antimicrobial therapy. Utilizing information and recommendations from both the human and veterinary literature will improve timely and accurate bacterial identification and therefore rapid and effective treatment of synovial sepsis across species and limit the development of antimicrobial resistance.

Open access
in Journal of the American Veterinary Medical Association



To investigate (1) variables associated with the likelihood of obtaining a positive culture, (2) commonly isolated microorganisms, and (3) antimicrobial resistance patterns of isolates from horses with presumptive synovial sepsis.


Synovial fluid, synovium, and bone samples from equine cases with presumptive synovial sepsis submitted to the Cornell University Animal Health Diagnostic Center from 2000 to 2020 for microbial culture and antimicrobial sensitivity testing.


Univariable and multivariable analyses were performed to determine the effect of variables on the likelihood of positive culture. Frequency distributions for isolated organisms and antimicrobial resistance were generated. Multidrug resistance patterns and associations were assessed with association rule mining.


The positive culture rate for all samples was 37.4%, while the positive culture rate among samples confirmed to be septic by a combination of clinical pathological variables and case details was 43%. Blood culture vial submissions were 1.7 times more likely to yield a positive culture compared to samples submitted in a serum tube. Structure sampled, tissue submitted, and horse age were associated with a positive culture. Staphylococcus spp (23.7%), Streptococcus spp (22.4%), and Enterococcus spp (9.67%) were commonly isolated. Multidrug resistance prevalence decreased from 92% (2000 to 2009) to 76% (2010 to 2020) of gram-negative isolates and 60% (2000 to 2009) to 52% (2010 to 2020) of gram-positive isolates.


The positive culture rate from synovial fluid submissions with traditional sampling and culture methods remains low and may be optimized by submitting samples in blood culture vials. Overall, antimicrobial resistance was frequently observed but did not increase from the first to second decade for most genera.

Open access
in American Journal of Veterinary Research