Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Brad S. Bennett x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare plasma disposition of the R(–) and S(+) enantiomers of carprofen after IV administration of a bolus dose to donkeys and horses.

Animals—5 clinically normal donkeys and 3 clinically normal horses.

Procedure—Blood samples were collected from all animals at time 0 (before) and at 10, 15, 20, 30, and 45 minutes and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 24, 28, 32, and 48 hours after IV administration of a bolus of carprofen (0.7 mg/kg). Plasma was analyzed in triplicate via high-performance liquid chromatography to determine the concentrations of the carprofen enantiomers. A plasma concentration-time curve for each donkey and horse was analyzed separately to estimate noncompartmental pharmacokinetic variables.

Results—In donkeys and horses, the area under the plasma concentration versus time curve (AUC) was greater for the R(–) carprofen enantiomer than it was for the S(+) carprofen enantiomer. For the R(–) carprofen enantiomer, the AUC and mean residence time (MRT) were significantly less and total body clearance (ClT) was significantly greater in horses, compared with donkeys. For the S(+) carprofen enantiomer, AUC and MRT were significantly less and ClT and apparent volume of distribution at steady state were significantly greater in horses, compared with donkeys.

Conclusions and Clinical Relevance—Results have suggested that the dosing intervals for carprofen that are used in horses may not be appropriate for use in donkeys. (Am J Vet Res 2004;65:1479–1482)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the disposition of a bolus of meloxicam (administered IV) in horses and donkeys (Equus asinus) and compare the relative pharmacokinetic variables between the species.

Animals—5 clinically normal horses and 5 clinically normal donkeys.

Procedures—Blood samples were collected before and after IV administration of a bolus of meloxicam (0.6 mg/kg). Serum meloxicam concentrations were determined in triplicate via high-performance liquid chromatography. The serum concentration-time curve for each horse and donkey was analyzed separately to estimate standard noncompartmental pharmacokinetic variables.

Results—In horses and donkeys, mean ± SD area under the curve was 18.8 ± 7.31 μg/mL/h and 4.6 ± 2.55 μg/mL/h, respectively; mean residence time (MRT) was 9.6 ± 9.24 hours and 0.6 ± 0.36 hours, respectively. Total body clearance (CLT) was 34.7 ± 9.21 mL/kg/h in horses and 187.9 ± 147.26 mL/kg/h in donkeys. Volume of distribution at steady state (VDSS) was 270 ± 160.5 mL/kg in horses and 93.2 ± 33.74 mL/kg in donkeys. All values, except VDSS, were significantly different between donkeys and horses.

Conclusions and Clinical Relevance—The small VDSS of meloxicam in horses and donkeys (attributed to high protein binding) was similar to values determined for other nonsteroidal anti-inflammatory drugs. Compared with other species, horses had a much shorter MRT and greater CLT for meloxicam, indicating a rapid elimination of the drug from plasma; the even shorter MRT and greater CLT of meloxicam in donkeys, compared with horses, may make the use of the drug in this species impractical.

Full access
in American Journal of Veterinary Research