Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Bonnie J. Gatson x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association


OBJECTIVE To determine the effects of diazepam combined with ketamine hydrochloride or propofol for induction of anesthesia (IOA) following premedication with sustained-release buprenorphine hydrochloride (SRB) on intraocular pressure (IOP) in sheep.

ANIMALS 20 healthy adult sheep.

PROCEDURES Diazepam with ketamine or propofol was given IV to each of 10 sheep after premedication with SRB (0.01 mg/kg, SC); after > 4 weeks, each sheep received the other induction combination with no premedication. For both eyes, IOPs were measured before premedication (if given), 10 minutes prior to (baseline) and immediately following administration of ketamine or propofol (time of IOA), after endotracheal intubation, and 5 minutes after IOA. Peak end-tidal Pco 2, globe position, and pupillary diameter were also analyzed.

RESULTS Data were not available for all sheep for all anesthetic episodes. Propofol-diazepam administration alone had no significant effect on IOP, whereas there was a significant decrease in IOP immediately following ketamine-diazepam administration alone. At 5 minutes after ketamine-diazepam administration, SRB-premedicated sheep had significantly higher IOP than unpremedicated sheep. Intraocular pressure was significantly higher at baseline, at intubation, and 5 minutes after IOA in SRB-premedicated sheep receiving propofol-diazepam, compared with unpremedicated sheep. Peak end-tidal Pco 2 at intubation was significantly higher in SRB-premedicated sheep. For sheep receiving either anesthetic treatment, IOPs did not differ significantly with or without SRB premedication. Globe position or pupillary diameter and IOP were not significantly related at any time point.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that both ketamine-diazepam and propofol-diazepam combinations were suitable for IOA without increasing IOP in sheep. The use of SRB should be avoided in sheep when increases in IOP are undesirable.

Full access
in American Journal of Veterinary Research



Evaluate agreement between 2 non-invasive blood pressure (NIBP) techniques and invasive arterial blood pressure (IBP) in anesthetized bats using various cuff sizes and cuff positioning while also evaluating its performance during hypertension and hypotension.


8 bats (1.1 ± 0.2 kg).


Bats were anesthetized with isoflurane in oxygen. NIBP was measured using oscillometric (NIBP-O) and Doppler (NIBP-D) techniques in the pectoral limb (PEC) and pelvic limbs (PEL) using 3 cuff sizes (1, 2, and 3). NIBP measurements were compared with IBP; systolic (SAPinvasive), mean (MAPinvasive), and diastolic arterial blood pressure (DAPinvasive) during normotension, hypertension, and hypotension. Hypotension was induced with isoflurane (3.8 ± 1.2%) and hypertension with norepinephrine (3 ± 0.5 µg/kg/min). Data analysis included Bland-Altman analyses and 3-way ANOVA. Results were reported as mean bias (95% CI).


NIBP-O monitor reported 29% errors, and experienced more failures with hypertension, cuff placement on PEC, and using a size 1 cuff. Across states, an agreement between NIBP-D and MAPinvasive with cuff 2 on PEL (−3 mmHg [−8, 1]), and NIBP-D and SAPinvasive with cuff 3 on PEC (2 mmHg [−5, 9 mmHg]) was achieved. NIBP-D over-estimated SAPinvasive and MAPinvasive during hypertension in both limbs with cuffs 1 and 2. Except during hypotension, NIBP-O underestimated MAPinvasive and DAPinvasive using a size 2 cuff on PEL.


In anesthetized bats, NIBP-O is unreliable for estimating IBP. NIBP-D shows acceptable agreement with MAPinvasive with cuff size 2 on PEL, and with SAPinvasive with cuff size 3 on PEC across a wide range of IBP values.

Open access
in American Journal of Veterinary Research