Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Anthony F. Johnson x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To examine the role of bovine viral diarrhea virus (BVDV) biotype on the establishment of fetal infection in cattle.

Animals—30 mixed-breed pregnant cows.

Procedure—Pregnant cows were inoculated oronasally with either i-VVNADL, originating from an infectious BVDV cDNA clone of the National Animal Disease Laboratory (NADL) isolate, or the parental virus stock, termed NADL-A.

Results—All cows developed neutralizing antibodies to BVDV, and virus was commonly isolated from peripheral blood mononuclear cells or nasal swab specimens of NADL-A inoculated cows; however, virus was rarely isolated from specimens of i-VVNADL inoculated cows. i-VVNADL did not cause fetal infection, whereas all fetuses harvested from NADL-A inoculated cows at 6 weeks after inoculation had evidence of infection. Immunoblot analysis of fetal virus isolates revealed the absence of NS3, confirming a noncytopathic (NCP) biotype BVDV in the NADL-A stock. The sequence of the NCP contaminant (termed NADL-1102) and the i-VVNADL genome were virtually identical, with the exception of a 270 nucleotide-long insert in the i-VVNADL genome. Phylogenetic analyses revealed that NADL-1102 forms a monophyletic group with 6 other NADL genomes.

Conclusions and Clinical Relevance—These data suggest that the contaminating NCP virus in the NADL-A stock was the ancestral NADL virus, which originally infected a bovine fetus and recombined to produce a cytopathic (CP) variant. Following oronasal infection of pregnant cows, viremia and transplacental transmission of CP BVDV to the fetus is rare, compared with the high occurrence of maternal viremia and fetal infection observed with NCP BVDV. (Am J Vet Res 2002;63:1455–1463)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate diagnostic tests used for detection of bovine viral diarrhea virus (BVDV) and determine the prevalence of BVDV subtypes 1a, 1b, and 2a in persistently infected (PI) cattle entering a feedlot.

Design—Prospective study.

Animals—21,743 calves.

Procedures—Samples were obtained from calves initially testing positive via antigen capture ELISA (ACE) performed on fresh skin (ear notch) specimens, and ACE was repeated. Additionally, immunohistochemistry (IHC) was performed on skin specimens fixed in neutral-buffered 10% formalin, and reverse transcriptase PCR (RT-PCR) assay and virus isolation were performed on serum samples. Virus was subtyped via sequencing of the 5′ untranslated region of the viral genome.

Results—Initial ACE results were positive for BVDV in 88 calves. After subsequent testing, results of ACE, IHC, RT-PCR assay, and viral isolation were positive in 86 of 88 calves; results of all subsequent tests were negative in 2 calves. Those 2 calves had false-positive test results. On the basis of IHC results, 86 of 21,743 calves were PI with BVDV, resulting in a prevalence of 0.4%. Distribution of BVDV subtypes was BVDV1b (77.9%), BVDV1a (11.6%), and BVDV2a (10.5%).

Conclusions and Clinical Relevance—Rapid tests such as ACE permit identification and segregation of PI cattle pending results of further tests, thus reducing their contact with the rest of the feedlot population. Although vaccines with BVDV1a and 2a components are given to cattle entering feedlots, these vaccines may not provide adequate protection against BVDV1b.

Full access
in Journal of the American Veterinary Medical Association