Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Antônio J. A. Aguiar x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the correlation between the bispectral index (BIS) and end-tidal isoflurane (ET ISO ) concentration and compare the use of 3 BIS sensor positions in dogs.

Animals—6 adult dogs.

Procedures—Mechanically ventilated dogs received pancuronium, and depth of anesthesia was altered by increasing ET ISO concentration from 1.5% to 2.3% and 3.0%. The BIS, suppression ratio (relative percentage of isoelectric electroencephalographic waveforms), and signal quality index (SQI) were recorded at each ET ISO concentration for each of 3 BIS sensor positions (frontal-occipital, bifrontal, and frontal-temporal positions).

Results—The BIS and ET ISO concentration were poorly correlated; regardless of sensor positioning, mean BIS values did not change significantly as ET ISO was increased. At 3% isoflurane, regardless of sensor positioning, there was an increase in suppression ratio coincident with BIS < 40 in some dogs, whereas paradoxic increases in BIS (> 60) were recorded in others. Furthermore, at 3.0% isoflurane, the SQI was significantly lower for the bifrontal sensor position (compared with values for the other positions), but low SQI values prevented recording of BIS values from the frontal-occipital sensor position in 2 dogs. Overall, BIS values derived from the 3 sensor positions did not differ.

Conclusions and Clinical Relevance—In dogs, BIS values may not reflect changes in depth of isoflurane anesthesia in the absence of noxious stimulation. Of the 3 sensor positions, frontal-temporal positioning provided better correlation with changes in depth of anesthesia induced via changes in isoflurane concentrations. However, the sensor placements yielded similar results at SQI values > 50.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine plasma concentrations and behavioral, antinociceptive, and physiologic effects of methadone administered via IV and oral transmucosal (OTM) routes in cats.

Animals—8 healthy adult cats.

Procedures—Methadone was administered via IV (0.3 mg/kg) and OTM (0.6 mg/kg) routes to each cat in a balanced crossover design. On the days of drug administration, jugular catheters were placed in all cats under anesthesia; a cephalic catheter was also placed in cats that received methadone IV. Baseline measurements were obtained ≥ 90 minutes after extubation, and methadone was administered via the predetermined route. Heart and respiratory rates were measured; sedation, behavior, and antinociception were evaluated, and blood samples were collected for methadone concentration analysis at predetermined intervals for 24 hours after methadone administration. Data were summarized and evaluated statistically.

Results—Plasma concentrations of methadone were detected rapidly after administration via either route. Peak concentration was detected 2 hours after OTM administration and 10 minutes after IV administration. Mean ± SD peak concentration was lower after OTM administration (81.2 ± 14.5 ng/mL) than after IV administration (112.9 ± 28.5 ng/mL). Sedation was greater and lasted longer after OTM administration. Antinociceptive effects were detected 10 minutes after administration in both groups; these persisted ≥ 2 hours after IV administration and ≥ 4 hours after OTM administration.

Conclusions and Clinical Relevance—Despite lower mean peak plasma concentrations, duration of antinociceptive effects of methadone was longer after OTM administration than after IV administration. Methadone administered via either route may be useful for perioperative pain management in cats.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.

Animals—8 adult cats.

Procedures—On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 μg/kg/ min, IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (≥ 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).

Results—In phase I, heart rate and arterial pressure did not differ between remifentanil- treated groups. From 30 to 90 minutes, cats receiving 0.3 μg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 μg of remifentanil/kg/min. In phase II, the highest dosage (mean ± SEM) of remifentanil that prevented cardiovascular responses was 0.23 ± 0.01 μg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.

Conclusions and Clinical Relevance—Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 μg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of increasing doses of remifentanil hydrochloride administered via constant rate infusion (CRI) on the minimum alveolar concentration (MAC) of isoflurane in cats.

Animals—6 healthy adult cats.

Procedures—For each cat, 2 experiments were performed (2-week interval). On each study day, anesthesia was induced and maintained with isoflurane; a catheter was placed in a cephalic vein for the administration of lactated Ringer's solution or remifentanil CRIs, and a catheter was placed in the jugular vein for collection of blood samples for blood gas analyses. On the first study day, individual basal MAC (MACBasal) was determined for each cat. On the second study day, 3 remifentanil CRIs (0.25, 0.5, and 1.0 μg/kg/min) were administered (in ascending order); for each infusion, at least 30 minutes elapsed before determination of MAC (designated as MACR0.25, MACR0.5, and MACR1.0, respectively). A 15-minute washout period was allowed between CRIs. A control MAC (MACControl) was determined after the last remifentanil infusion.

Results—Mean ± SD MACBasal and MACControl values at sea level did not differ significantly (1.66 ± 0.08% and 1.52 ± 0.21%, respectively). The MAC values determined for each remifentanil CRI did not differ significantly. However, MACR0.25, MACR0.5, and MACR1.0 were significantly decreased, compared with MACBasal, by 23.4 ± 7.9%, 29.8 ± 8.3%, and 26.0 ± 9.4%, respectively.

Conclusions and Clinical Relevance—The 3 doses of remifentanil administered via CRI resulted in a similar degree of isoflurane MAC reduction in adult cats, indicating that a ceiling effect was achieved following administration of the lowest dose.

Full access
in American Journal of Veterinary Research