Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Anna Mykkänen x
- Refine by Access: All Content x
Abstract
OBJECTIVE To characterize the expression of monocarboxylate transporters (MCTs) 1 and 4 and the ancillary protein CD147 in the intestinal tract of healthy equids and determine the cellular location of CD147 in the intestinal epithelium.
ANIMALS 12 healthy horses and ponies slaughtered for meat production or euthanized for reasons unrelated to gastrointestinal tract disease.
PROCEDURES The entire gastrointestinal tract was removed from each equid within 45 minutes after slaughter or euthanasia. Tissue samples were obtained from the antimesenteric side of the duodenum, jejunum, ileum, middle part of the cecum, sternal flexure of the ventral colon, pelvic flexure, sternal flexure of the dorsal colon, and descending colon (small colon). Expressions of MCT1, MCT4, and the ancillary protein CD147 were examined in tissue samples from each of the 8 intestinal locations by means of quantitative PCR assay, immunoblotting, and immunohistochemical analyses.
RESULTS Expression of MCT1 was most abundant in the cecum and colonic sites, whereas expression of MCT4 was predominantly in the proximal section of the intestine (small intestinal sites and cecum). Immunohistochemical analysis revealed that MCT1 and CD147 were present in the membranes of enterocytes (in crypts and villi).
CONCLUSIONS AND CLINICAL RELEVANCE The anatomic distribution of MCT1 and MCT4 in the equine intestinal tract determined in this study together with the previous knowledge of the sites of substrate absorption indicated that MCT1 might predominantly contribute to the uptake of short-chain fatty acids in the large intestine and MCT4 might predominantly contribute to the uptake of lactate in the small intestine.
Abstract
OBJECTIVE To examine whether expression of extracellular matrix metalloproteinase inducer (EMMPRIN) can be detected in equine lungs and whether it correlates with matrix metalloproteinase (MMP)-2 and -9 expression in bronchoalveolar lavage fluid (BALF) of horses with chronic inflammation of the lungs (ie, lower airway inflammation [LAI]).
ANIMALS 29 horses with signs of chronic respiratory tract disease, which were classified as the LAI (n = 17) and LAI with respiratory distress (RDLAI [12]) groups, and 15 control horses.
PROCEDURES BALF, tracheal aspirate, and blood samples were obtained, and EMMPRIN expression was determined from BALF cells and RBCs by use of western blotting. Activities of MMP-2 and -9 were determined with zymography.
RESULTS Expression of EMMPRIN protein was identified in BALF cells of all horses. Expression of EMMPRIN protein was highest for the RDLAI group and was correlated with MMP-2 and -9 protein expression, MMP-9 gelatinolytic activity, and airway neutrophilia.
CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that EMMPRIN was involved in the pathophysiologic processes of asthma in horses. However, additional studies of horses and other species are warranted to elucidate the regulation of EMMPRIN expression in asthmatic lungs.
Abstract
OBJECTIVE To compare the effects of MK-467 and hyoscine butylbromide on detomidine hydrochloride–induced cardiorespiratory and gastrointestinal changes in horses.
ANIMALS 6 healthy adult horses.
PROCEDURES Horses received detomidine hydrochloride (20 μg/kg, IV), followed 10 minutes later by MK-467 hydrochloride (150 μg/kg; DET-MK), hyoscine butylbromide (0.2 mg/kg; DET-HYO), or saline (0.9% NaCl) solution (DET-S), IV, in a Latin square design. Heart rate, respiratory rate, rectal temperature, arterial and venous blood pressures, and cardiac output were measured; blood gases and arterial plasma drug concentrations were analyzed; selected cardiopulmonary variables were calculated; and sedation and gastrointestinal borborygmi were scored at predetermined time points. Differences among treatments or within treatments over time were analyzed statistically.
RESULTS With DET-MK, detomidine-induced hypertension and bradycardia were reversed shortly after MK-467 injection. Marked tachycardia and hypertension were observed with DET-HYO. Mean heart rate and mean arterial blood pressure differed significantly among all treatments from 15 to 35 and 15 to 40 minutes after detomidine injection, respectively. Cardiac output was greater with DET-MK and DET-HYO than with DET-S 15 minutes after detomidine injection, but left ventricular workload was significantly higher with DET-HYO. Borborygmus score, reduced with all treatments, was most rapidly restored with DET-MK. Sedation scores and pharmacokinetic parameters of detomidine did not differ between DET-S and DET-MK.
CONCLUSIONS AND CLINICAL RELEVANCE MK-467 reversed or attenuated cardiovascular and gastrointestinal effects of detomidine without notable adverse effects or alterations in detomidine-induced sedation in horses. Further research is needed to determine whether these advantages are found in clinical patients and to assess whether the drug influences analgesic effects of detomidine.