Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Anna K. Rötting x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To study the effects of phenylbutazone, indomethacin, prostaglandin E2 (PGE2), glutamine, and butyrate on restitution of oxidant-injured right dorsal colon of horses in vitro.

Sample Population—Right dorsal colon from 9 adult horses euthanatized for reasons other than gastrointestinal tract disease.

Procedure—Mucosal segments from the right dorsal colon were injured via exposure to HOCl and incubated in Ussing chambers in solutions containing phenylbutazone, indomethacin, indomethacin and PGE2, glutamine, and butyrate. Transepithelial resistance and mucosal permeability to mannitol were measured, and all mucosal segments were examined histologically.

Results—The HOCl-injured mucosa had lower resistance and higher permeability to mannitol, compared with control tissue. Histologic changes were also evident. Resistance of HOCl-injured mucosa recovered partially during the incubation period, and glutamine improved recovery. Phenylbutazone and indomethacin increased resistance, but these increases were not significant. Butyrate and PGE2 had no effects, compared with nontreated HOCl-injured tissues. Mucosal permeability to mannitol was lower in glutamine-treated tissue, compared with nontreated tissue. Histologic changes reflected the resistance and permeability changes.

Conclusions and Clinical Relevance—According to our findings, phenylbutazone and indomethacin do not seem to interfere with restitution of oxidant-injured mucosa of equine colon in vitro, and glutamine could facilitate mucosal restitution. (Am J Vet Res 2004;65:1589–1595)

Full access
in American Journal of Veterinary Research

Abstract

Objectives—To establish reference values for the range of the number of eosinophils found in equine gastrointestinal mucosa and to describe the distribution of this cell within the equine gastrointestinal mucosa.

Sample Population—Gastrointestinal mucosal specimens from 14 adult horses euthanatized for reasons other than gastrointestinal disease.

Procedures—Gastrointestinal mucosal specimens were collected and grouped according to their anatomic regions. For histologic examination slides were stained with Luna's eosinophil stain to determine eosinophil accumulation and distribution. The mucosa was divided into 5 sections for each anatomic location, and the percentage of eosinophils in each of the 5 sections relative to the total eosinophil count in all sections was determined. Additionally, the number of eosinophils per square millimeter of mucosa was calculated as a measure of the degree of eosinophil accumulation.

Results—Lowest numbers of eosinophils were found in the stomach, and numbers increased from there to the cecum, then decreased from the ascending colon (right ventral colon, left ventral colon, pelvic flexure, left dorsal colon, and right dorsal colon) to small colon. In all gastrointestinal sections, most eosinophils were located near the muscularis mucosae and were rarely found near or on the luminal surface of the mucosa.

Conclusions and Clinical Relevance—The distribution of eosinophils in the gastrointestinal tract of horses followed a pattern within the mucosa and between different sections of the gastrointestinal tract. The derived reference values and distribution data could be used to detect changes in eosinophil response in the equine gastrointestinal mucosa caused by diseases states.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine characteristics of the inflammatory reaction in the jejunum of horses in response to various mechanical manipulations.

Animals—12 adult warmblood horses without gastrointestinal tract disorders.

Procedures—The proximal aspect of the jejunum in each horse was divided into 5 segments, and the following manipulations were performed: manual emptying, placement of Doyen forceps, enterotomy alone, enterotomy with mucosal abrasion, and serosal abrasion. Jejunum samples were collected before (control), immediately after, and 30 minutes after the end of manipulations and histologically evaluated to determine distribution of neutrophils and eosinophils.

Results—Macroscopically, all manipulations resulted in jejunal hemorrhage and edema. Compared with control samples, neutrophil numbers were significantly higher after manipulations in the serosa (after all manipulation types), circular muscle layer (after manual emptying), submucosa (after placement of Doyen forceps), and mucosa (after all manipulations except enterotomy alone). Eosinophil numbers were significantly higher in the submucosa after mechanical abrasion of the serosa and manual emptying versus control samples.

Conclusions and Clinical Relevance—Results indicated mechanical manipulation of the jejunum resulted in local inflammatory reactions characterized predominantly by infiltration of neutrophils. This could contribute to the development of postoperative ileus or adhesions in horses without macroscopically detectable injury of the jejunum during surgery.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify expression and localization of cyclooxygenase (COX)-1 and COX-2 in healthy and ischemic-injured left dorsal colon of horses.

Sample Population—Left dorsal colon tissue samples from 40 horses.

Procedures—Tissue samples that were used in several related studies on ischemia and reperfusion were evaluated. Samples were collected during anesthesia, before induction of ischemia, and following 1 hour of ischemia, 1 hour of ischemia and 30 minutes of reperfusion, 2 hours of ischemia, 2 hours of ischemia and 30 minutes of reperfusion, and 2 hours of ischemia and 18 hours of reperfusion. Histomorphometric analyses were performed to characterize morphological injury. Immunohistochemical analyses were performed to characterize expression and localization of COX-1 and COX-2.

Results—COX-1 and COX-2 were expressed in control tissues before ischemia was induced, predominantly in cells in the lamina propria. Ischemic injury significantly increased expression of COX-2 in epithelial cells on the colonic surface and in crypts. A similar significant increase of COX-1 expression was seen in the epithelial cells.

Conclusions and Clinical Relevance—On the basis of information on the role of COX-2, upregulation of COX-2 in surface epithelium and crypt cells following ischemic injury in equine colon may represent an early step in the repair process.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate the eosinophilic response in intestinal mucosa of horses with intestinal ischemia and reperfusion or with strangulation of the jejunum or colon.

SAMPLE Mucosal samples from horses with naturally occurring strangulation (n = 24 horses) or distention (n = 6) of the jejunum or colon (11), with experimentally induced ischemia and reperfusion of the jejunum (6) or colon (15), or that were euthanized for reasons other than gastrointestinal tract disease (13).

PROCEDURES Mucosal samples were collected and grouped by type of intestinal injury. Slides were stained with Luna eosinophil stain and histologically examined to determine eosinophil accumulation and distribution. Number of eosinophils per mm2 of mucosa was calculated as a measure of eosinophil accumulation. Additionally, mucosa was categorized into 5 regions; the percentage of eosinophils in each of the 5 regions, relative to the total eosinophil count in all regions, was determined.

RESULTS Eosinophil migration toward and onto the luminal surface was evident in tissues after ischemia and reperfusion and after naturally occurring strangulating disease of the jejunum and colon, as indicated by a decrease in the number of eosinophils near the muscularis mucosa and an increase in the number of eosinophils on or near the luminal surface. Ischemia alone did not change eosinophil distribution in the jejunum or colon.

CONCLUSIONS AND CLINICAL RELEVANCE Eosinophils responded to mucosal damage evoked by ischemia and reperfusion by migration toward and onto the luminal surface. This migration could represent an important component of the inflammatory response to injury in equine gastrointestinal mucosa.

Full access
in American Journal of Veterinary Research

Abstract

Objectives—To evaluate the in vitro protective effects of acetylcysteine and response of resident mucosal eosinophils in oxidant-induced injury to tissues of right dorsal colon of horses.

Animals—9 adult horses.

Procedure—Gastrointestinal mucosa was damaged in vitro with 3mM hypochlorous acid (HOCl), with and without prior exposure to 6mM acetylcysteine. Control tissues were not exposed to HOCl or acetylcysteine. Control and damaged tissues were incubated in Krebs-Ringer-bicarbonate solution and tissue resistance measured during 240 minutes. Tissue permeability to radiolabeled mannitol was also used to assess mucosal barrier integrity. Tissues were examined by light microscopy before and after HOCl exposure and during and after incubation.

Results—Exposure to HOCl caused tissue damage and decreased tissue resistance. Restitution did occur during the incubation period. Eosinophils were located near the muscularis mucosae in freshly harvested tissues and migrated towards the luminal surface in response to HOCl-induced injury. Compared with tissues treated with HOCl without acetylcysteine, pretreatment with acetylcysteine prevented HOCl-induced tissue damage, changes in resistance, and histologically detectable eosinophil migration. The permeability to mannitol increased to the same extent in tissues treated with HOCl alone or with acetylcysteine and HOCl.

Conclusions and Clinical Relevance—Eosinophils migrated toward the mucosal surface in equine colon in response to oxidant-induced damage in vitro. This novel finding could be relevant to inflammation in equine colon and a pathophysiologic feature of many colonic diseases. Acetylcysteine protected the mucosa against oxidant-induced injury and may be useful as a treatment option for various gastrointestinal tract disorders in horses. (Am J Vet Res 2003;64:1205–1212)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the use of a micro-lightguide tissue spectrophotometer for measurement of tissue oxygenation and blood flow in the small and large intestines of horses under anesthesia.

Animals—13 adult horses without gastrointestinal disease.

Procedures—Horses were anesthetized and placed in dorsal recumbency. Ventral midline laparotomy was performed. Intestinal segments were exteriorized to obtain measurements. Spectrophotometric measurements of tissue oxygenation and regional blood flow of the jejunum and pelvic flexure were obtained under various conditions that were considered to have a potential effect on measurement accuracy. In addition, arterial oxygen saturation at the measuring sites was determined by use of pulse oximetry.

Results—12,791 single measurements of oxygen saturation, relative amount of hemoglobin, and blood flow were obtained. Errors occurred in 381 of 12,791 (2.98%) measurements. Most measurement errors occurred when surgical lights were directed at the measuring site; covering the probe with the surgeon's hand did not eliminate this error source. No measurement errors were observed when the probe was positioned on the intestinal wall with room light, at the mesenteric side, or between the mesenteric and antimesenteric side. Values for blood flow had higher variability, and this was most likely caused by motion artifacts of the intestines.

Conclusions and Clinical Relevance—The micro-lightguide spectrophotometry system was easy to use on the small and large intestines of horses and provided rapid evaluation of the microcirculation. Results indicated that measurements should be performed with room light only and intestinal motion should be minimized.

Full access
in American Journal of Veterinary Research