Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Amy Gilbert x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To evaluate species identification and rabies virus (RABV) characterization among samples from bats submitted for rabies testing in the United States and assess whether a standardized approach to specimen selection for RABV characterization could enhance detection of a sentinel event in virus dissemination among bats.

SAMPLE

United States public health rabies surveillance system data collected in January 2010 through December 2015.

PROCEDURES

The number of rabies-tested bats for which species was reported and the number of RABV-positive samples for which virus characterization would likely provide information regarding introduction of novel RABV variants and translocation and host-shift events were calculated. These specimens were designated as specimens of epizootiological importance (SEIs). Additionally, the estimated test load that public health laboratories could expect if all SEIs underwent RABV characterization was determined.

RESULTS

Species was reported for 74,928 of 160,017 (47%) bats submitted for rabies testing. Identified SEIs were grouped in 3 subcategories, namely nonindigenous bats; bats in southern border states, Florida, Puerto Rico, and the US Virgin Islands; and bats of species that are not commonly found to be inflected with RABV. Annually, 692 (95% CI, 600 to 784) SEIs were identified, of which only 295 (95% CI, 148 to 442) underwent virus characterization. Virus characterization of all SEIs would be expected to increase public health laboratories’ overall test load by 397 (95% CI, 287 to 506) samples each year.

CONCLUSIONS AND CLINICAL RELEVANCE

Species identification and RABV characterization may aid detection of a sentinel event in bat RABV dissemination. With additional resources, RABV characterization of all SEIs as a standardized approach to testing could contribute to knowledge of circulating bat RABV variants.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To estimate the number of dogs required to find linkage to heritable traits of hip dysplasia in dogs from an experimental pedigree.

Animals—147 Labrador Retrievers, Greyhounds, and their crossbreed offspring.

Procedure—Labrador Retrievers with hip dysplasia were crossed with unaffected Greyhounds. Age at detection of femoral capital ossification, distraction index (DI), hip joint dorsolateral subluxation (DLS) score, and hip joint osteoarthritis (OA) were recorded. Power to find linkage of a single marker to a quantitative trait locus (QTL) controlling 100% of the variation in a dysplastic trait in the backcross dogs was determined.

Results—For the DI at the observed effect size, recombination fraction of 0.05, and heterozygosity of 0.75, 35 dogs in the backcross of the F1 to the Greyhound generation would yield linkage at a power of 0.8. For the DLS score, 35 dogs in the backcross to the Labrador Retriever generation would be required for linkage at the same power. For OSS, 45 dogs in the backcross to the founding Labrador Retrievers would yield linkage at the same power. Fewer dogs were projected to be necessary to find linkage to hip OA. Testing for linkage to the DLS at 4 loci simultaneously, each controlling 25% of the phenotypic variation, yielded an overall power of 0.7.

Conclusions and Clinical Significance—Based on this conservative single-marker estimate, this pedigree has the requisite power to find microsatellites linked to susceptibility loci for hip dysplasia and hip OA by breeding a reasonable number of backcross dogs. (Am J Vet Res 2003;222:418–424)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the genetic influence on expression of traits associated with canine hip dysplasia.

Animals—193 dogs from an experimental canine pedigree.

Procedure—An experimental canine pedigree was developed for linkage analysis of hip dysplasia by mating dysplastic Labrador Retrievers with nondysplastic Greyhounds. A statistical model was designed to test the effects of Labrador Retriever and Greyhound alleles on age at detection of femoral capital epiphyseal ossification, 8-month distraction index, and 8-month dorsolateral subluxation score.

Results—The additive effect was significant for age at detection of femoral capital epiphyseal ossification. Restricted maximum likelihood estimates (± SD) for this trait were 6.4 ± 1.95, 10.2 ± 2.0, 10.8 ± 3.1, 11.4 ± 2.1, and 13.6 ± 4.6 days of age for Greyhounds, Greyhound backcross dogs, F1 dogs, Labrador Retriever backcross dogs, and Labrador Retrievers, respectively. The additive effect was also significant for the distraction index. Estimates for this trait were 0.21 ± 0.07, 0.29 ± 0.15, 0.44 ± 0.12, 0.52 ± 0.18, and 0.6 ± 0.17 for the same groups, respectively. For the dorsolateral subluxation score, additive and dominance effects were significant. Estimates for this trait were 73.5 ± 4.1, 71.3 ± 6.5, 69.1 ± 6.0, 50.6 ± 12.9, and 48.4 ± 7.7%, respectively, for the same groups.

Conclusions—In this canine pedigree, traits associated with canine hip dysplasia are heritable. Phenotypic differences exist among founder dogs of each breed and their crosses. This pedigree should be useful for identification of quantitative trait loci underlying the dysplastic phenotype. (Am J Vet Res 2002;63: 1029–1035)

Full access
in American Journal of Veterinary Research