Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Allison J. Stewart x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the rate of development of septic arthritis after elective arthroscopy and evaluate associations between various factors and development of this complication in horses.

Design—Retrospective case series.

Animals—682 horses that underwent arthroscopic procedures at the University of Illinois Veterinary Teaching Hospital from 1994 to 2003.

Procedures—Information pertaining to signalment, joints treated, whether antimicrobials were administered, and development of postoperative septic arthritis was collected from medical records. Horses with a primary problem of septic arthritis or wounds involving joints were excluded. The following factors were evaluated to determine their roles in joint sepsis: breed, sex, joint, and preoperative and intra-articular administration of antimicrobials. Telephone interviews with clients were used to determine whether unreported septic arthritis had developed.

Results—8 of 932 (0.9%) joints in 7 of 682 (1.0%) horses that underwent arthroscopy developed postoperative septic arthritis. Follow-up information after discharge from the hospital was available for 461 of the 682 horses, and of those, 8 of 627 (1.3%) joints in 7 of 461 (1.5%) horses developed septic arthritis. Breed and joint treated were significant risk factors for development of postoperative septic arthritis, with draft breeds and tibiotarsal joints more likely than others to be affected. Sex, preoperatively administered antimicrobials, and intra-articularly administered antimicrobials were not associated with development of postoperative septic arthritis.

Conclusions and Clinical Relevance—Results can be used for comparison with data from other institutions and surgical facilities. Additional precautions should be undertaken when arthroscopic surgery involves draft breeds and tibiotarsal joints.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate tendon injuries in horses over a 16-week period by use of ultrasonography and low-field magnetic resonance imaging (MRI).

Sample—Tendons of 8 young adult horses.

Procedures—The percentage of experimentally induced tendon injury was evaluated in cross section at the maximal area of injury by use of ultrasonography and MRI at 3, 4, 6, 8, and 16 weeks after collagenase injection. The MRI signal intensities and histologic characteristics of each tendon were determined at the same time points.

Results—At 4 weeks after collagenase injection, the area of maximal injury assessed on cross section was similar between ultrasonography and MRI. In lesions of > 4 weeks' duration, ultrasonography underestimated the area of maximal cross-sectional injury by approximately 18%, compared with results for MRI. Signal intensity of lesions on T1-weighted images was the most hyperintense of all the sequences, lesions on short tau inversion recovery images were slightly less hyperintense, and T2-weighted images were the most hypointense. Signal intensity of tendon lesions was significantly higher than the signal intensity for the unaltered deep digital flexor tendon. Histologically, there was a decrease in proteoglycan content, an increase in collagen content, and minimal change in fiber alignment during the 16 weeks of the study.

Conclusions and Clinical Relevance—Ultrasonography may underestimate the extent of tendon damage in tendons with long-term injury. Low-field MRI provided a more sensitive technique for evaluation of tendon injury and should be considered in horses with tendinitis of > 4 weeks' duration.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of sodium hyaluronate (HA) on corticosteroid-induced cartilage matrix catabolism in equine articular cartilage explants.

Sample Population—30 articular cartilage explants from fetlock joints of 5 adult horses without joint disease.

Procedure—Articular cartilage explants were treated with control medium or medium containing methylprednisolone acetate (MPA; 0.05, 0.5, or 5.0 mg/mL), HA (0.1, 1.0, or 1.5 mg/mL), or both. Proteoglycan (PG) synthesis was measured by incorporation of sulfur 35-labeled sodium sulphate into PGs, and PG degradation was measured by release of radiolabeled PGs into the medium. Total glycosaminoglycan (GAG) content in media and explants and total explant DNA were determined.

Results—Methylprednisolone acetate caused a decrease in PG synthesis, whereas HA had no effect. Only the combination of MPA at a concentration of 0.05 mg/mL and HA at a concentration of 1.0 mg/mL increased PG synthesis, compared with control explants. Methylprednisolone acetate increased degradation of newly synthesized PGs into the medium, compared with control explants, and HA alone had no effect. Hyaluronate had no effect on MPAinduced PG degradation and release into media. Neither MPA alone nor HA alone had an effect on total cartilage GAG content. Methylprednisolone acetate caused an increase in release of GAG into the medium at 48 and 72 hours after treatment. In combination, HA had no protective effect on MPA-induced GAG release into the medium. Total cartilage DNA content was not affected by treatments.

Conclusions and Clinical Relevance—Our results indicate that HA addition has little effect on corticosteroid- induced cartilage matrix PG catabolism in articular cartilage explants. (Am J Vet Res 2005;66:48–53)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of tramadol and its metabolites O-desmethyltramadol (ODT) and N-desmethyltramadol (NDT) in adult horses.

Animals—12 mixed-breed horses.

Procedures—Horses received tramadol IV (5 mg/kg, over 3 minutes) and orally (10 mg/kg) with a 6-day washout period in a randomized crossover design. Serum samples were collected over 48 hours. Serum tramadol, ODT, and NDT concentrations were measured via high-performance liquid chromatography and analyzed via noncompartmental analysis.

Results—Maximum mean ± SEM serum concentrations after IV administration for tramadol, ODT, and NDT were 5,027 ± 638 ng/mL, 0 ng/mL, and 73.7 ± 12.9 ng/mL, respectively. For tramadol, half-life, volume of distribution, area under the curve, and total body clearance after IV administration were 2.55 ± 0.88 hours, 4.02 ± 1.35 L/kg, 2,701 ± 275 h•ng/mL, and 30.1 ± 2.56 mL/min/kg, respectively. Maximal serum concentrations after oral administration for tramadol, ODT, and NDT were 238 ± 41.3 ng/mL, 86.8 ± 17.8 ng/mL, and 159 ± 20.4 ng/mL, respectively. After oral administration, half-life for tramadol, ODT, and NDT was 2.14 ± 0.50 hours, 1.01 ± 0.15 hours, and 2.62 ± 0.49 hours, respectively. Bioavailability of tramadol was 9.50 ± 1.28%. After oral administration, concentrations achieved minimum therapeutic ranges for humans for tramadol (> 100 ng/mL) and ODT (> 10 ng/mL) for 2.2 ± 0.46 hours and 2.04 ± 0.30 hours, respectively.

Conclusions and Clinical Relevance—Duration of analgesia after oral administration of tramadol might be < 3 hours in horses, with ODT and the parent compound contributing equally.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the lowest ACTH dose that would induce a significant increase in serum cortisol concentration and identify the time to peak cortisol concentration in healthy neonatal foals.

Design—Prospective randomized crossover study.

Animals—11 healthy neonatal foals.

Procedures—Saline (0.9% NaCl) solution or 1 of 4 doses (0.02, 0.1, 0.25, and 0.5 μg/kg [0.009, 0.045, 0.114, and 0.227 μg/lb]) of cosyntropin (synthetic ACTH) was administered IV. Serum cortisol concentrations were measured before and 10, 20, 30, 60, 90, 120, 180, and 240 minutes after administration of cosyntropin or saline solution; CBCs were performed before and 30, 60, 120, and 240 minutes after administration.

Results—Serum cortisol concentration was significantly increased, compared with baseline, by 10 minutes after cosyntropin administration at doses of 0.1, 0.25, and 0.5 μg/kg. Serum cortisol concentration peaked 20 minutes after administration of cosyntropin at doses of 0.02, 0.1, and 0.25 μg/kg, with peak concentrations 1.7, 2.0, and 1.9 times the baseline concentration, respectively. Serum cortisol concentration peaked 30 minutes after cosyntropin administration at a dose of 0.5 μg/kg, with peak concentration 2.2 times the baseline concentration. No significant differences were detected among peak serum cortisol concentrations obtained with cosyntropin administration at doses of 0.25 and 0.5 μg/kg. Cosyntropin administration significantly affected the lymphocyte count and the neutrophil-to-lymphocyte ratio.

Conclusions and Clinical Relevance—Results suggested that in healthy neonatal foals, the lowest dose of cosyntropin to result in significant adrenal gland stimulation was 0.25 μg/kg, with peak cortisol concentration 20 minutes after cosyntropin administration.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objectives—To compare combined vacuum and rotation with the spinner flask technique for seeding chondrocytes on chitosan versus polyglycolic acid matrices.

Sample Population—Porcine chondrocytes.

Procedure—A suspension containing 5 × 106 chondrocytes/ scaffold was used to evaluate 2 seeding techniques, including a spinner flask and a customdesigned vacuum chamber used for 2 hours prior to transfer to a bioreactor. For each seeding technique, prewetted scaffolds were composed of polyglycolic acid (PGA) mesh or macroporous chitosan sponge. Constructs were collected at 48 hours for DNA quantification, measurement of water and gycosaminoglycan (GAG) content, and scanning electron microscopy.

Results—Yield of both seeding techniques was similar for each type of scaffold. Percentage of cells contained in the center of PGA constructs was increased with seeding in the bioreactor (43% of total cell number), compared with the spinner flask (18%). The DNA content and cell number per construct were 10 times greater for PGA constructs, compared with chitosan constructs. Chitosan scaffolds seeded in the bioreactor yielded a significantly higher GAG:DNA ratio than did PGA scaffolds. Whereas chondrones formed on chitosan scaffolds, cell distribution was more uniform on PGA scaffolds.

Conclusions and Clinical Relevance—The vacuumbioreactor technique allowed seeded chondrocytes to attach to PGA scaffolds within 48 hours and improved uniformity of cell distribution, compared with the spinner technique. Although formation of extracellular matrix may be stimulated by seeding chitosan scaffolds in the bioreactor, further evaluations of the seeding technique and characteristics of chitosan scaffolds are warranted. (Am J Vet Res 2005;66:599–605)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the diagnostic value of serum concentrations of total magnesium (tMg) and ionized magnesium (iMg), concentrations of magnesium (Mg) in muscle, intracellular Mg (icMg) concentrations, urinary Mg excretion (EMg), Mg clearance (CMg), and fractional clearance of Mg (FCMg) in horses fed diets with Mg content above and below National Research Council recommendations.

Animals—9 young female horses.

Procedures—6 horses were fed a reduced-Mg diet for 29 days followed by an Mg-supplemented diet for 24 days. Control horses (n = 3) were fed grass hay exclusively. Blood, urine, and tissue samples were collected, and an Mg retention test was performed before and after restriction and supplementation of Mg intake. Serum tMg, serum iMg, muscle Mg, icMg, and urine Mg concentrations were measured, and 24-hour EMg, CMg, and FCMg were calculated.

Results—Reductions in urinary 24-hour EMg, CMg, and FCMg were evident after 13 days of feeding a reduced-Mg diet. Serum tMg and iMg concentrations, muscle Mg content, and results of the Mg retention test were not affected by feeding the Mg-deficient diet. Spot urine sample FCMg accurately reflected FCMg calculated from 6- and 24-hour pooled urine samples. Mean ± SD FCtMg of horses eating grass hay was 29 ± 8%, whereas mean FCtMg for horses fed a reduced-Mg diet for 29 days was 6 ± 3%.

Conclusions and Clinical Relevance—The 24-hour EMg was the most sensitive indicator of reduced Mg intake in horses. Spot sample FCMg can be conveniently used to identify horses consuming a diet deficient in Mg. (Am J Vet Res 2004;65:422–430)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether seasonal variations exist in endogenous plasma ACTH, plasma α-melanocyte—stimulating hormone (α-MSH), serum cortisol, and serum insulin concentrations and in the results of a dexamethasone suppression test for older, clinically normal geldings in Alabama.

Design—Cohort study.

Animals—15 healthy mixed-breed geldings (median age, 14 years).

Procedures—Sample collection was repeated monthly for 12 months. Dexamethasone (0.04 mg/kg [0.02 mg/lb], IM) was administered and cortisol concentrations were determined at 15 and 19 hours. Radioimmunoassays were used to measure ACTH, α-MSH, cortisol, and insulin concentrations at each testing time. Hormone concentrations were compared between months via repeated-measures ANOVA and correlated with age within each month.

Results—A significant time effect was found between months for α-MSH and insulin concentrations. Endogenous cortisol and ACTH concentrations remained within existing reference ranges. Significant correlations were detected between age and ACTH concentration for several fall and winter months and between age and insulin concentration for September.

Conclusions and Clinical Relevance—Older horses have higher ACTH concentrations in several fall and winter months and higher insulin concentrations in September than do younger horses. Seasonally specific reference ranges are required for α-MSH and insulin concentrations, with significantly higher concentrations detected in the fall. Practitioners should be advised to submit samples only to local laboratories that can provide such reference ranges for their local geographic region.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the lowest ACTH dose that would induce a maximum increase in serum cortisol concentration in healthy adult horses and identify the time to peak cortisol concentration.

Design—Evaluation study.

Animals—8 healthy adult horses.

Procedures—Saline (0.9% NaCl) solution or 1 of 4 doses (0.02, 0.1, 0.25, and 0.5 μg/kg [0.009, 0.045, 0.114, and 0.227 μg/lb]) of cosyntropin (synthetic ACTH) were administered IV (5 treatments/horse). Serum cortisol concentrations were measured before and 30, 60, 90, 120, 180, and 240 minutes after injection of cosyntropin or saline solution; CBCs were performed before and 30, 60, 120, and 240 minutes after injection.

Results—For all 4 doses, serum cortisol concentration was significantly increased, compared with the baseline value, by 30 minutes after administration of cosyntropin; no significant differences were detected among maximum serum cortisol concentrations obtained in response to administration of doses of 0.1, 0.25, and 0.5 μg/kg. Serum cortisol concentration peaked 30 minutes after administration of cosyntropin at a dose of 0.02 or 0.1 μg/kg, with peak concentrations 1.5 and 1.9 times, respectively, the baseline concentration. Serum cortisol concentration peaked 90 minutes after administration of cosyntropin at a dose of 0.25 or 0.5 μg/kg, with peak concentrations 2.0 and 2.3 times, respectively, the baseline concentration. Cosyntropin administration significantly affected WBC, neutrophil, and eosinophil counts and the neutrophil-to-lymphocyte ratio.

Conclusions and Clinical Relevance—Results suggested that in healthy horses, administration of cosyntropin at a dose of 0.1 μg/kg resulted in maximum adrenal stimulation, with peak cortisol concentration 30 minutes after cosyntropin administration.

Full access
in Journal of the American Veterinary Medical Association