Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Allison Bichoupan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To identify metabolites and metabolic pathways affected in dogs with aminoaciduric canine hypoaminoacidemic hepatopathy syndrome (ACHES) compared to healthy control (CON) dogs of similar ages and breeds. To improve our understanding of ACHES pathophysiology and identify novel candidate biomarkers associated with ACHES.

ANIMALS

A prospective case-control study. Privately owned dogs with ACHES (n = 19) and healthy (CON) dogs (n = 9) were recruited between February 18, 2015, and April 18, 2018.

METHODS

A prospective case-control study. Plasma and urine were collected from ACHES and CON dogs. The Cornell University Proteomics and Metabolomics Core Facility conducted an untargeted metabolomic analysis.

RESULTS

After controlling for age, sex, and weight, 111 plasma and 207 urine metabolites significantly differed between ACHES and CON dogs. Data reduction and cluster analysis revealed robust segregation between ACHES and CON dogs. Enrichment analysis of significant compounds in plasma or urine identified altered metabolic pathways, including those related to AA metabolism, cellular energetics, and lipid metabolism. Biomarker analysis identified metabolites that best-distinguished ACHES from CON dogs, including pyruvic acid isomer and glycerol-3-phosphate in the plasma and an alanine isomer and choline in the urine.

CLINICAL RELEVANCE

Our findings provide an in-depth analysis of metabolic perturbations associated with ACHES. Several affected metabolic pathways (eg, lipid metabolism) offer a new understanding of ACHES pathophysiology. Novel candidate biomarkers warrant further evaluation to determine their potential to aid in ACHES diagnosis, prognosis, and treatment monitoring.

Open access
in American Journal of Veterinary Research