Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Alicia L. Bertone x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To create high-quality sequence data for the generation of an equine gene expression microarray and evaluate array performance by use of lipopolysaccharide (LPS) exposure of synoviocytes.

Sample Population—Public nucleotide sequence database from Equus caballus and synoviocytes from clinically normal adult horses.

Procedure—Computer procurement of equine gene sequences, probe design, and manufacture of an oligomicroarray were performed. Array performance was evaluated by use of patterns for equine synoviocytes in response to LPS.

Results—Starting with 18,924 equine gene sequences, 3,098 equine 3' sequences were annotated and met the inclusion criteria for an expression microarray. An equine oligonucleotide expression microarray was created by use of 68,266 of the 25-oligomer probes to uniquely identify each gene. Most genes in the array (68%) were expressed in equine synoviocytes. Repeatability of the array was high (r, > 0.99), and LPS upregulated (> 5-fold change) 84 genes, many of which were inflammatory mediators, and downregulated (> 5-fold change) 14 genes. An initial pattern of gene expression for effects of LPS on synoviocytes consisted of 102 genes.

Conclusions and Clinical Relevance—Use of a computer algorithm to curate an equine sequence database generated high-quality annotated species-specific gene sequences and probe sets for a gene expression oligomicroarray, which was used to document changes in gene expression associated with LPS exposure of equine synoviocytes. The equine public database was expanded from 290 annotated genes to > 3,000 provisionally annotated genes. Similar curation and annotation of public databases could be used to create other species-specific microarrays. (Am J Vet Res 2004;65:1664–1673)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the association between subjective lameness grades and kinetic gait parameters and assess the variability in kinetic parameters in horses with experimentally induced forelimb lameness.

Animals—32 horses.

Procedures—Forelimb lameness was induced in each horse via injection of lipopolysaccharide into 1 metacarpophalangeal joint (40 experimental trials). Subjective lameness grading and 13 kinetic gait parameters (force plate analysis) were assessed before (baseline) and at 12, 18, and 24 hours after lipopolysaccharide injection. While horses were trotting, kinetic gait analysis was performed for 8 valid repetitions at each time point. Repeated-measures analyses were performed with 8 repetitions for each kinetic parameter as the outcome, and lameness grades, time points after lipopolysaccharide injection, and repetition order as explanatory variables. Sensitivity and specificity of kinetic parameters for classification of horses as sound or lame (in relation to subjective lameness scores) were calculated. Between- and within-horse variabilities of the 13 kinetic parameters were assessed by calculation of coefficients of variation.

Results—Subjective lameness grades were significantly associated with most of the kinetic parameters. Vertical force peak and impulse had the lowest between- and within-horse coefficients of variation and the highest correlations with subjective lameness grade. Vertical force peak had the highest sensitivity and specificity for lameness classification. Vertical force peak and impulse were significantly decreased even in horses with mild or unobservable lameness.

Conclusions and Clinical Relevance—Among the kinetic gait parameters, vertical force peak and impulse had the best potential to reflect lameness severity and identify subclinical forelimb gait abnormalities. (Am J Vet Res 2005;66:1805–1815)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate 2 commercially available transfection reagents for transfection efficiency and distribution of small interfering RNA (siRNA) molecules to chondrocytes in monolayer cultures and full-thickness cartilage explants from guinea pigs and horses.

Sample—Cartilage explants from 5 one-month-old and 3 adult guinea pigs and 5 adult clinically normal horses.

Procedures—Monolayer chondrocytes and uniform cartilage explants were exposed to 1 of 2 siRNA transfection complexes according to manufacturers' protocols (1μM [1×]). Additionally, monolayer chondrocytes were exposed to 2× the suggested amount of a proprietary siRNA molecule. Full-thickness cartilage explants were treated with 1× (1μM), 2× (2μM), and 4× (4μM) or 1× (0.13μM), 4× (0.52μM), and 8× (1.04μM) the recommended concentrations of the proprietary siRNA and the cationic liposome siRNA, respectively, in equivalent media volumes. Use of fluorescent siRNA duplexes allowed quantification of transfected cells via flow cytometry and direct visualization of the depth and distribution of in situ transfection via fluorescent microscopy.

Results—With both transfection reagents, > 90% of monolayer chondrocytes were transfected. In explants, only use of the proprietary molecule achieved > 50% transfection efficiency, whereas use of the cationic liposome achieved < 20%. Only the proprietary molecule-treated cartilage consistently contained fluorescent cells throughout all zones; the cationic liposome-transfected chondrocytes were restricted to explant surfaces.

Conclusions and Clinical Relevance—Robust transfection of chondrocytes in monolayer was achieved with both reagents, but only use of the proprietary molecule attained effective full-thickness transfection of explants that may allow relevant transcript reduction via RNAi.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of various concentrations of retinoic acid (RA) or a synthetic RA receptor antagonist (LE135) on equine chondrocytes or bone marrow—derived equine mesenchymal stem cells (BMDMSCs) in monolayer cultures.

Sample—Articular cartilage and BMDMSCs from 5 clinically normal horses.

Procedures—Monolayers of chondrocytes cultured in standard media and of BMDMSCs cultured in chondrogenic media were treated with RA at concentrations of 0, 0.1, 1, or 10μM or LE135 at concentrations of 0, 0.1, 1, or 10μM on day 0. On days 7 and 14, samples were analyzed for DNA concentration, chondrocyte morphology or features consistent with chondrogenesis (ie, chondral morphology [scored from 0 to 4]), and gene expression of collagen type Ia (CI), collagen type II (CII), and aggrecan.

Results—Chondrocytes treated with RA had more mature chondral morphology (range of median scores, 3.0 to 4.0) than did untreated controls (range of median scores, 0.5 to 0.5). Chondrocytes treated with LE135 did not sustain chondrocyte morphology. All BMDMSCs had evidence of chondral morphology or high CII:CI ratio. Retinoic acid (1 or 10μM) or LE135 (10μM) treatment decreased DNA content of BMDMSC cultures. At 0.1 and 1μM concentrations, LE135 weakly but significantly increased chondral morphology scores, compared with untreated controls, but lack of aggrecan expression and lack of increased CII:CI ratio, compared with that of controls, did not affect chondrogenesis.

Conclusions and Clinical Relevance—RA promoted maturation and hypertrophy in chondrocytes but not BMDMSCs in monolayer cultures. Deficiency or blockade of RA may prevent hypertrophy and maturation of differentiated chondrocytes.

Restricted access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To investigate effects of hyaluronic acid (HA) or HA combined with chondroitin sulfate (CS) and N-acetyl-d-glucosamine (NAG) by use of a lipopolysaccharide (LPS) in vitro method.

SAMPLE Monolayer cultures of synovial cells from 4 adult horses.

PROCEDURES Synovial cell cultures were untreated or treated with HA alone or HA-CS-NAG for 24 hours, subsequently unchallenged or challenge-exposed with 2 LPS concentrations (20 and 50 ng/mL) for 2 hours, and retreated with HA or HA-CS-NAG for another 24 hours. Cellular morphology of cultures was evaluated at 0, 24 (before LPS), 26 (after LPS), and 50 (24 hours after end of LPS) hours. At 50 hours, cell number and viability and prostaglandin (PG) E2, interleukin (IL)-6, matrix metalloproteinase (MMP)-3, and cyclooxygenase (COX)-2 production were measured.

RESULTS LPS challenge exposure induced a significant loss of characteristic synovial cell morphology, decrease in cell viability, and increases in concentrations of PGE2, IL-6, MMP-3, and COX-2. Cells treated with HA or HA-CS-NAG had significantly better viability and morphology scores and lower concentrations of PGE2, MMP-3, IL-6, and COX-2 than untreated LPS challenge-exposed cells. Cells treated with HA had significantly better morphology scores at 50 hours than cells treated with HA-CS-NAG. Cells treated with HA-CS-NAG had significantly superior suppression of LPS-induced production of PGE2, IL-6, and MMP-3 than cells treated with HA alone.

CONCLUSIONS AND CLINICAL RELEVANCE HA and HA-CS-NAG protected synovial cells from the effects of LPS. Treatment with HA-CS-NAG had the greatest anti-inflammatory effect. These results supported the protective potential of HA and HA-CS-NAG treatments.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate host cell permissiveness and cytotoxic effects of recombinant and modified adenoviral vectors in equine chondrocytes, synovial cells, and bone marrow–derived mesenchymal stem cells (BMD-MSCs).

Sample Population—Articular cartilage, synovium, and bone marrow from 15 adult horses.

Procedures—Equine chondrocytes, synovial cells, and BMD-MSCs and human carcinoma (HeLa) cells were cultured and infected with an E-1–deficient adenovirus vector encoding the β-galactosidase gene or the green fluorescent protein gene (Ad-GFP) and with a modified E-1–deficient vector with the arg-gly-asp capsid peptide insertion and containing the GFP gene (Ad-RGD-GFP). Percentages of transduced cells, total and transduced cell counts, and cell viability were assessed 2 and 7 days after infection.

Results—Permissiveness to adenoviral vector infection was significantly different among cell types and was ranked in decreasing order as follows: HeLa cells > BMD-MSCs > chondrocytes > synovial cells. Morphologic signs of cytotoxicity were evident in HeLa cells but not in equine cells. Numbers of transduced cells decreased by day 7 in all cell types except equine BMD-MSCs. Transduction efficiency was not significantly different between the Ad-GFP and Ad-RGD-GFP vectors.

Conclusion and Clinical Relevance—Sufficient gene transfer may be achieved by use of an adenovirus vector in equine cells. High vector doses can be used in equine cells because of relative resistance to cytotoxic effects in those cells. Greater permissiveness and sustained expression of transgenes in BMD-MSCs make them a preferential cell target for gene therapy in horses.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the buffy coat and apheresis methods for preparation of platelet concentrates from equine blood by comparing platelet and growth factor concentrations.

Animals—15 mature mixed-breed geldings.

Procedure—Whole blood samples were collected and processed by use of a buffy coat or apheresis method to obtain platelet poor and platelet concentrated fractions. The PCV, WBC count, and platelet count were compared among whole blood samples, platelet poor fractions, concentrates obtained by use of the apheresis method (ie, apheresis platelet concentrates), and concentrates obtained by use of the buffy coat method (ie, buffy coat platelet concentrates). Concentrations of transforming growth factor- β (ie, TGF-β1 and TGF-β2) and insulin-like growth factor were compared between buffy coat and apheresis platelet concentrates.

Results—Platelet concentrations were 8.9-fold and 5.2-fold greater in buffy coat and apheresis platelet concentrates, respectively, compared with whole blood. Platelet concentrations were 13.1-fold greater in filtered apheresis platelet concentrates, compared with whole blood. TGF-β1 concentrations were 2.8- fold and 3.1-fold greater in buffy coat and apheresis platelet concentrates, respectively, and TGF-β1 concentrations were 10.5-fold greater in filtered apheresis platelet concentrates, compared with whole blood. TGF-β2 concentrations were 3.6-fold greater in apheresis platelet concentrates, compared with whole blood. Platelet concentrations correlated with growth factor concentrations across all blood and platelet fractions. White blood cell counts had a significant positive correlation with TGF-β1 concentration in buffy coat platelet concentrates.

Conclusions and Clinical Relevance—Platelets and TGF-β1 can be concentrated reliably from equine blood by use of buffy coat or apheresis methods, without modification of the protocols used for humans. (Am J Vet Res 2004;65:924–930)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate early cellular influences of bone morphogenetic protein (BMP)12 and BMP2 on equine superficial digital flexor tenocytes (SDFTNs) and equine bone marrow–derived mesenchymal stem cells (BMDMSCs).

Animals—9 adult clinically normal horses.

Procedures—BMDMSCs and SDFTNs were cultured in monolayer, either untreated or transduced with adenovirus encoding green fluorescent protein, adenovirus encoding BMP12, or adenovirus encoding BMP2. Cytomorphologic, cytochemical, immunocytochemical, and reverse transcriptase–quantitative PCR (RT-qPCR) analyses were performed on days 3 and 6. Genetic profiling for effects of BMP12 was evaluated by use of an equine gene expression microarray on day 6.

Results—BMDMSCs and SDFTNs had high BMP12 gene expression and remained viable and healthy for at least 6 days. Type l collagen immunocytochemical staining for SDFTNs and tenocyte-like morphology for SDFTNs and BMDMSCs were greatest in BMP12 cells. Cartilage oligomeric matrix protein, as determined via RT-qPCR assay, and chondroitin sulfate, as determined via gene expression microarray analysis, were upregulated relative to control groups in SDFTN-BMP12 cells. The BMDMSCs and SDFTNs became mineralized with BMP2, but not BMP12. Superficial digital flexor tenocytes responded to BMP12 with upregulation of genes relevant to tendon healing and without mineralization as seen with BMP2.

Conclusions and Clinical Relevance—Targeted equine SDFTNs may respond to BMP12 with improved tenocyte morphology and without mineralization, as seen with BMP2. Bone marrow–derived mesenchymal stem cells may be able to serve as a cell delivery method for BMP12.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To compare articular cartilage from horses with naturally developing osteochondrosis (OC) with normal articular cartilage and healing cartilage obtained from horses with experimentally induced osteochondral fractures.

Sample Population—109 specimens of articular cartilage from 78 horses.

Procedure—Morphologic characteristics, proteoglycan (PG), and type II collagen were analyzed in articular cartilage of OC specimens (group 1), matched healing cartilage obtained 40 days after experimentally induced osteochondral fractures (group 2), and matched normal cartilage from the same sites (group 3).

Results—79 specimens of OC cartilage were obtained from horses. Ex vivo PG synthesis was significantly greater in the femoral cartilage, compared with synthesis in the tibial cartilage, and significantly greater for groups 1 and 2, compared with group 3. For groups 1 and 2, femoral fragments had significantly greater PG content, compared with PG content in tibial fragments. Keratan sulfate content was significantly less in group 3, compared with groups 1 and 2. Cartilage from the OC specimens had loss of structural architecture. The OC tissue bed stained positive for chondroitin sulfate and type II collagen, but the fracture bed did not.

Conclusions and Clinical Relevance—Our analyses could not distinguish articular cartilage from horses with OC and a healing fracture. Both resembled an anabolic, reparative process. Immunohistochemical analysis suggested a chondromyxoid tissue in the OC bed that was morphologically similar to fibrous tissue but phenotypically resembled hyaline cartilage. Thus, tissue in the OC bed may be degenerative cartilage, whereas tissue in the fracture bed may be reparative fibrous callus. (Am J Vet Res 2005;66:1881–1890)

Restricted access
in American Journal of Veterinary Research