Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Akira Matsui x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To quantify fatigue-induced electromyographic changes in hind limb muscles in horses.

ANIMALS 8 Thoroughbreds.

PROCEDURES The left and right hind limb longissimus dorsi, tensor fasciae latae, gluteus medius, and biceps femoris muscles were instrumented for surface electromyography. Hoof strain gauges were attached to confirm stride cycle. Each horse was galloped on a treadmill (grade, 3%) at a constant speed (12.6 to 14.7 m/s) to achieve fatigue after approximately 360 seconds. Before and after this exercise, the horses were trotted at 3.5 m/s. At 30-second intervals during galloping an integrated electromyography (iEMG) value for a stride and the median frequency of muscle discharge (MF) in each limb were measured. The mean of stride frequency (SF), iEMG value, and MF of 5 consecutive strides at the start and end of galloping for the lead and trailing limbs were compared. For trotting, these variables were compared at 60 seconds before and after galloping.

RESULTS The mean ± SD value for SF decreased over time (2.14 ± 0.06 to 2.05 ± 0.07 stride/s). In both the lead and trailing limbs, fatigue decreased the iEMG values of the gluteus medius and biceps femoris muscles but not those of the longissimus dorsi and tensor fasciae latae muscles. The MF did not change for any muscle during galloping with fatigue. The SF, iEMG value, and MF did not change during trotting with fatigue.

CONCLUSIONS AND CLINICAL RELEVANCE Fatigue induced by high-speed galloping decreased the gluteus medius and biceps femoris muscles' iEMG values in Thoroughbreds. Fatigue of these less fatigue-resistant hind limb muscles would affect a horse's speed.

Full access
in American Journal of Veterinary Research


OBJECTIVE To determine whether racehorses undergoing regular exercise at 2 intensities or stall rest during a period of reduced training (detraining) would differentially maintain their cardiopulmonary and oxygen-transport capacities.

ANIMALS 27 Thoroughbreds.

PROCEDURES Horses trained on a treadmill for 18 weeks underwent a period of detraining for 12 weeks according to 1 of 3 protocols: cantering at 70% of maximal rate of oxygen consumption ( o 2max) for 3 min/d for 5 d/wk (canter group); walking for 1 h/d for 5 d/wk (walk group); or stall rest (stall group). Standardized treadmill exercise protocols (during which cardiopulmonary and oxygen-transport variables were measured) were performed before and after detraining.

RESULTS Mass-specific o 2max, maximal cardiac output, and maximal cardiac stroke volume of all groups decreased after 12 weeks of detraining with no differences among groups. After detraining, arterial-mixed-venous oxygen concentration difference did not decrease in any group, and maximal heart rate decreased in the walk and stall groups. Run time to exhaustion and speeds eliciting o 2max and maximal heart rate and at which plasma lactate concentration reached 4mM did not change in the canter group but decreased in the walk and stall groups.

CONCLUSIONS AND CLINICAL RELEVANCE Horses following the cantering detraining protocol maintained higher values of several performance variables compared with horses following the walking or stall rest protocols. These results suggested that it may be possible to identify a minimal threshold exercise intensity or protocol during detraining that would promote maintenance of important performance-related variables and minimize reductions in oxygen-transport capacity in horses.

Full access
in American Journal of Veterinary Research