Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Adam H. Biedrzycki x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To evaluate the analgesic efficacy of lumbosacral intrathecal administration of 2% lidocaine in goats undergoing cesarean sections (C-sections).

ANIMALS

7 client-owned goats.

PROCEDURES

Medical records were retrospectively reviewed to identify records of goats undergoing C-sections between January 2020 and November 2021 with intrathecal administration of lidocaine as the primary method of analgesia. Effect of analgesia, American Society of Anesthesiologists status, quality of surgery (determined based on lack of patient movement), mean surgical time, time to stand, and anesthetic complications were recorded.

RESULTS

Intrathecal administration of preservative-free 2% lidocaine (1 mg/kg) at the lumbosacral space with the use of a 20-gauge 3.5-inch (0.9 X 90-mm) spinal needle under aseptic technique achieved effective analgesia in sedated goats by time of skin incision. Adequacy of analgesia was complete (failure to respond to needle-prick of skin or skin incision) in 6 of the 7 goats and moderate in 1 goat. Quality of surgery was adequate in all goats. Mean surgical time was 96 ± 20 minutes, and mean time to stand was 182 ± 61 minutes from the time of intrathecal administration. Complications included ruminal tympany, hypothermia, and partial blockade in 1 goat each.

CLINICAL RELEVANCE

Results indicated that intrathecal administration of lidocaine as described in the present report provided adequate analgesia for C-sections in goats, with minimal complications, and quicker return to hindlimb motor function postoperatively than historically reported for epidurals.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To quantify the translation and angular rotation of the distal sesamoid bone (DSB) using computed tomography (CT) and medical modeling software.

SAMPLE

30 thoracic limbs from equine cadavers.

PROCEDURES

Partial (n = 12), full (8), and matched full and subsequently transected (10) thoracic limbs were collected. Bone volume CT images were acquired in three positions: extension (200° metacarpophalangeal angle), neutral (180°), and maximal flexion (110°). Mean translation and angular rotation of each DSB were recorded. Differences were determined with two-way ANOVA and post hoc Tukey’s tests for pairwise comparisons; P value was set at < 0.05.

RESULTS

Dorsal translation was significant during extension (1.4 ± 0.4 mm full limbs and 1.3 ± 0.2 mm partial limbs, P < 0.001). Distal translation was significant during extension (1.9 ± 0.4 mm full and 1.1 ± 0.4 mm partial) and flexion (5.4 ± 0.7 mm full and 6.22 ± 0.6 mm partial, P < 0.001). Rotation was significant (P < 0.001) about the mediolateral axis during extension (17.1° ± 1.4°) and flexion (2.6° ± 1.3°). Translation and rotation of the DSB were significantly different (P < 0.001) between full and partial limbs.

CLINICAL RELEVANCE

This study provides the first quantification of translation and angular rotation of the DSB within the equine hoof. Partial limbs had significantly reduced movement compared to full limbs, suggesting that transection of flexor tendons alters distal thoracic limb kinematics. Further studies are required to determine if pathologic changes in the podotrochlear apparatus have an impact in clinical lameness outcomes.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

This study aims to quantitatively characterize the passive kinematics of the healthy, soft tissue-intact equine stifle to establish an objective foundation for providing insights into the etiology of stifle disorders and developing a possible surgical treatment for stifle degenerative disease.

ANIMALS

5 whole-horse specimens.

PROCEDURES

Reflective markers with intracortical bone pins and a motion capture system were used to investigate the stifle joint kinematics. Kinematics of 5 whole-horse specimens euthanized within 2 hours were calculated for internal/external rotation, adduction/abduction, and cranial/caudal translation of the medial and lateral femoral condyles and estimated joint contact centroids as functions of joint extension angle.

RESULTS

From 41.7° to 121.6° (mean ± SD, range of motion: 107.5° ± 7.2°) of joint extension, 13° ± 3.7° of tibial external rotation and 6° ± 2.7° of adduction were observed. The lateral femoral condyle demonstrated significantly greater cranial translation than the medial during extension (23.7 mm ± 9.3 mm vs. 14.3 mm ± 7.0 mm, P = .01). No significant difference was found between the cranial/caudal translation of estimated joint contact centroids in the medial and lateral compartment (13.3 mm ± 7.7 mm vs. 16.4 mm ± 5.8 mm, P = .16).

CLINICAL RELEVANCE

The findings share similarities with kinematics for human knees and sheep and dog stifles, suggesting it may be possible to translate what has been learned in human arthroplasty to treatment for equine stifles.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine whether anesthesia type (sedation or general anesthesia) affects kid survival to discharge in caprine cesarean sections (C-sections).

ANIMALS

Retrospective cohort of 99 caprine C-sections (2011–2021).

PROCEDURES

All surgeries were performed via left flank laparotomy in right lateral recumbency. The number of kids alive at presentation, surgery, and discharge was recorded. Kids that were dead on presentation or euthanized intraoperatively were excluded. Goats were classified as “healthy” (American Society of Anesthesiologists status ≤ 2) or “sick” (≥ 3).

RESULTS

Kid survival was significantly higher for C-sections performed under sedation (47/52 [90%]) than for C-sections performed under general anesthesia (16/24 [66%]; P = .004). Relative risk was 1.4 and odds ratio was 4.7.

CLINICAL RELEVANCE

Performing C-sections in sedated goats may improve kid survival rates over those under general anesthesia.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To report clinical experience using virtual surgical planning (VSP) and surgical application of 3D printed custom surgical guides to facilitate uni- and biapical correction of antebrachial deformities in dogs.

ANIMALS

11 dogs (13 antebrachial deformity corrections).

PROCEDURES

Using CT-based bone models, VSP was performed, and surgical guides were designed and 3D printed. The guides were used to execute osteotomies and align bone segments. Postoperative CTs were obtained to compare limb alignment with the VSP. Long-term assessment of lameness and cosmesis were compared with preoperative status.

RESULTS

Guides were successfully utilized and postoperative analysis was available for 10 of 13 deformities. Guides were abandoned in 2 deformities due to soft tissue tension. Evaluation of postoperative frontal, sagittal, axial, and translational limb alignment revealed that over 90% of parameters were within the acceptable range of ≤ 5° angulation and rotation or ≤ 5 mm of translation from the VSP. Lameness scores were improved in 7/8 deformities with associated preoperative lameness, and posture was improved in 10/10 deformities in which guides were deployed. Complications included reduced range of carpal motion (n = 2), implant sensitivity (n = 2), fracture (n = 1), and tendon laceration (n = 1).

CLINICAL RELEVANCE

VSP and customized surgical guide application facilitated accurate antebrachial limb deformity correction in the majority of deformities in this case series. The use of VSP and 3D printed guides would appear to be a viable and accurate approach for correction of both uni- and biapical antebrachial deformities in dogs.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To evaluate the biomechanical properties of 4 methods for fusion of the centrodistal and tarsometatarsal joints in horses and compare them among each other and with control tarsi.

SAMPLE 24 sets of paired tarsi without substantial signs of osteoarthritis harvested from equine cadavers.

PROCEDURES Test constructs (n = 6/type) were prepared from 1 tarsus from each pair to represent surgical drilling; 2 medially to laterally placed kerf-cut cylinders (MLKCs); a single large, dorsally applied kerf-cut cylinder (DKC); and a dorsomedially applied locking compression plate (DMLCP). Constructs and their contralateral control tarsi were evaluated in 4-point bending in the dorsoplantar, lateromedial, and mediolateral directions; internal and external rotation; and axial compression. Bending, torsional, and axial stiffness values were calculated.

RESULTS Mean stiffness values were consistently lower for surgical drilling constructs than for contralateral control tarsi. Over all biomechanical testing, surgical drilling significantly reduced joint stability. The MLKC constructs had superior biomechanical properties to those of control tarsi for 4-point bending but inferior properties for external and internal rotation. The DMLCP and DKC constructs were superior to control tarsi in dorsoplantar, rotational, and axial compression directions only; DMLCP constructs had no superior stiffness in lateromedial or mediolateral directions. Only the DKC constructs had greater stiffness in the mediolateral direction than did control tarsi. Over all biomechanical testing, DMLCP and DKC constructs were superior to the other constructs.

CONCLUSIONS AND CLINICAL RELEVANCE These biomechanical results suggested that a surgical drilling approach to joint fusion may reduce tarsal stability in horses without clinical osteoarthritis, compared with stability with no intervention, whereas the DMLCP and DKC approaches may significantly enhance stability.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To assess the feasibility and accuracy of using 2 methods for reduction and alignment of simulated comminuted diaphyseal tibial fractures in conjunction with 3-D–printed patient-specific pin guides.

SAMPLE

Paired pelvic limbs from 8 skeletally mature dogs weighing 20 to 35 kg.

METHODS

CT images of both tibiae were obtained, and 3-D reconstructions of the tibiae were used to create proximal and distal patient-specific pin guides. These guides were printed and used to facilitate fracture reduction and alignment in conjunction with either a 3-D–printed reduction guide or a linear type 1A external fixator. Postreduction CT images were used to assess the accuracy of pin guide placement and the accuracy of fracture reduction and alignment.

RESULTS

The 3-D–printed guides were applied with acceptable ease. Guides for both groups were placed with minor but detectable deviations from the planned location (P = .01), but deviations were not significantly different between groups. Fracture reduction resulted in similar minor but detectable morphological differences from the intact tibiae (P = .01). In both groups, fracture reduction and alignment were within clinically acceptable parameters for fracture stabilization by means of minimally invasive plate osteosynthesis.

CLINICAL RELEVANCE

Virtual surgical planning and fabrication of patient-specific 3-D–printed pin guides have the potential to facilitate fracture reduction and alignment during use of minimally invasive plate osteosynthesis for fracture stabilization.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To develop 3D models of larynges to compare arytenoid abduction measurements between specimens and models, and to investigate the anatomic feasibility of placing an implant across the cricoarytenoid joint (CAJ) with or without arthrotomy.

SAMPLES

Cadaveric equine larynges (n = 9).

PROCEDURES

Equine larynges underwent sequential CT scans in a neutral position and with 2 arytenoid treatments: bilateral arytenoid abduction (ABD) and bilateral arytenoid abduction after left cricoarytenoid joint arthrotomy (ARTH). Soft tissue, cartilage, and luminal volume 3-dimensional models were generated. Rima glottidis cross-sectional area (CSA) and left-to-right quotient (LRQ) angles were measured on laryngeal specimens and models. Arytenoid translation, articular contact area, and length of modeled implants placed across the CAJ were measured on models. Data were analyzed using paired t test or ANOVA and Tukey’s post hoc test or non-parametric equivalents (P < .05).

RESULTS

ARTH CSA was larger for laryngeal specimens than models (P = .0096). There was no difference in all other measures of CSA and LRQ angle between treatment groups or between specimens and models. There was no difference between ABD and ARTH groups for arytenoid cartilage translation, contact area, and implant length. The articular contact area was sufficient for modeled implant placement across the CAJ with a narrow range of implant lengths (17.59 mm to 23.87 mm) across larynges with or without arthrotomy.

CLINICAL RELEVANCE

These results support further investigation of a CT-guided, minimally invasive surgical procedure. Future studies will evaluate the outcomes of the new procedure for technical precision, biomechanical stability, and post-operative success rates for horses with recurrent laryngeal neuropathy (RLN).

Open access
in American Journal of Veterinary Research