Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Abigail J. Gregg x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the effects of interleukin (IL)-1β on proteoglycan metabolism in equine cartilage explants when cultured in the presence of synoviocytes.

Sample Population—Samples of cartilage and synovium collected from the femoropatellar joints of three 2- to 3-year-old horses.

Procedures—3 experimental groups were established: cartilage explants only, synoviocytes only, and cartilage explants-synoviocytes in coculture. In each group, samples were cultured with or without IL-1β (10 ng/mL) for 96 hours. Glycosaminoglycan (GAG) content of cartilage and medium samples was measured by use of a spectrophotometric assay; RNA was isolated from synoviocytes and cartilage and analyzed for expression of matrix metalloproteinases (MMP)-3 and -13 (cartilage and synoviocytes), aggrecan (cartilage), collagen type IIB (cartilage), and 18S as a control (cartilage and synoviocytes) by use of quantitative PCR assays. Cartilage matrix metachromasia was assessed histochemically.

Results—IL-1β–induced GAG loss from cartilage was significantly less in cocultures than in cartilage-only cultures. Cartilage aggrecan gene expression was also significantly less downregulated and synoviocyte MMP-3 expression was less upregulated by IL-1β in cocultures, compared with cartilage- and synoviocyteonly cultures. Histochemical findings supported the molecular and biochemical results and revealed maintenance of matrix metachromasia in cocultured cartilage treated with IL-1β.

Conclusions and Clinical Relevance—Results suggest that synoviocytes secrete 1 or more mediators that preferentially protect matrix GAG metabolism from the degradative effects of IL-1β. Further studies involving proteomic and microarray approaches in similar coculture systems may elucidate novel therapeutic targets for the treatment of osteoarthritis.

Full access
in American Journal of Veterinary Research