Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Tomohito Inoue x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare the effect of oral administration of tramadol alone and with IV administration of butorphanol or hydromorphone on the minimum alveolar concentration (MAC) of sevoflurane in cats.

Design—Crossover study.

Animals—8 healthy 3-year-old cats.

Procedures—Cats were anesthetized with sevoflurane in 100% oxygen. A standard tail clamp method was used to determine the MAC of sevoflurane following administration of tramadol (8.6 to 11.6 mg/kg [3.6 to 5.3 mg/lb], PO, 5 minutes before induction of anesthesia), butorphanol (0.4 mg/kg [0.18 mg/lb], IV, 30 minutes after induction), hydromorphone (0.1 mg/kg [0.04 mg/lb], IV, 30 minutes after induction), saline (0.9% NaCl) solution (0.05 mL/kg [0.023 mL/lb], IV, 30 minutes after induction), or tramadol with butorphanol or with hydromorphone (same doses and routes of administration). Naloxone (0.02 mg/kg [0.009 mg/lb], IV) was used to reverse the effects of treatments, and MACs were redetermined.

Results—Mean ± SEM MACs for sevoflurane after administration of tramadol (1.48 ± 0.20%), butorphanol (1.20 ± 0.16%), hydromorphone (1.76 ± 0.15%), tramadol and butorphanol (1.48 ± 0.20%), and tramadol and hydromorphone (1.85 ± 0.20%) were significantly less than those after administration of saline solution (2.45 ± 0.22%). Naloxone reversed the reductions in MACs.

Conclusions and Clinical Relevance—Administration of tramadol, butorphanol, or hydromorphone reduced the MAC of sevoflurane in cats, compared with that in cats treated with saline solution. The reductions detected were likely mediated by effects of the drugs on opioid receptors. An additional reduction in MAC was not detected when tramadol was administered with butorphanol or hydromorphone.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs.

Design—Randomized complete-block crossover design.

Animals—8 healthy adult dogs.

Procedure—Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC.

Results—Anesthetic index of sevoflurane (mean ± SEM, 3.45 ± 0.22) was significantly higher than that of isoflurane (2.61 ± 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses.

Conclusions and Clinical Relevance—Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses. (J Am Vet Med Assoc 2004;225:700–704)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare the efficacy of preoperative administration of buprenorphine (via oral transmucosal [OTM] and IV routes) for postoperative analgesia in dogs undergoing ovariohysterectomy.

Design—Prospective, randomized, blinded study.

Animals—18 dogs undergoing routine ovariohysterectomy.

Procedures—Dogs were allocated to 3 groups (6 dogs/group) and were assigned to receive buprenorphine (20 μg/kg [9.09 μg/lb], IV; a low dose [20 μg/kg] via OTM administration [LOTM]; or a high dose [120 μg/kg [54.54 μg/lb] via OTM administration [HOTM]) immediately before anesthetic induction with propofol and maintenance with isoflurane for ovariohysterectomy. Postoperative pain was assessed by use of a dynamic interactive pain scale. Dogs were provided rescue analgesia when postoperative pain exceeded a predetermined threshold. Blood samples were collected, and liquid chromatography-electrospray ionization-tandem mass spectrometry was used to determine plasma concentrations of buprenorphine and its metabolites. Data were analyzed with an ANOVA.

Results—Body weight, surgical duration, propofol dose, isoflurane concentration, and cardiorespiratory variables did not differ significantly among treatment groups. Number of dogs requiring rescue analgesia did not differ significantly for the HOTM (1/6), IV (3/6), and LOTM (5/6) treatments. Similarly, mean ± SEM duration of analgesia did not differ significantly for the HOTM (20.3 ± 3.7 hours), IV (16.0 ± 3.8 hours), and LOTM (7.3 ± 3.3 hours) treatments. Plasma buprenorphine concentration was ≤ 0.60 ng/mL in 7 of 9 dogs requiring rescue analgesia.

Conclusions and Clinical Relevance—Buprenorphine (HOTM) given immediately before anesthetic induction can be an alternative for postoperative pain management in dogs undergoing ovariohysterectomy.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare efficacy and cardiorespiratory effects of dexmedetomidine and ketamine in combination with butorphanol, hydromorphone, or buprenorphine (with or without reversal by atipamezole) in dogs undergoing castration.

Design—Prospective, randomized, split-plot, blinded study.

Animals—30 healthy client-owned sexually intact male dogs.

Procedures—Dogs (n = 10 dogs/group) were assigned to receive dexmedetomidine (15 μg/kg [6.82 μg/lb]) and ketamine (3 mg/kg [1.36 mg/lb]) with butorphanol (0.2 mg/kg [0.09 mg/lb]; DKBut), the same dosages of dexmedetomidine and ketamine with hydromorphone (0.05 mg/kg [0.023 mg/lb]; DKH), or the same dosages of dexmedetomidine and ketamine with buprenorphine (40 μg/kg [18.18 μg/lb]; DKBup). All drugs were administered as a single IM injection for induction and maintenance of anesthesia for castration. At conclusion of the surgery, 5 dogs in each treatment group received atipamezole (150 μg/kg [68.18 μg/lb], IM), and the remainder received saline (0.9% NaCl) solution IM. Cardiorespiratory variables and quality of anesthesia were assessed. Supplemental isoflurane was administered to the dogs when anesthesia was considered inadequate during surgery.

Results—All drug combinations rapidly induced anesthesia. Dogs were intubated within 10 minutes after injection. Supplemental isoflurane was needed during surgery in 1, 3, and 4 dogs in the DKBup, DKBut, and DKH groups, respectively. Dogs that received atipamezole had a significantly shorter recovery time. Some dogs in each group had bradycardia and hypoxemia with hypertension.

Conclusions and Clinical Relevance—DKBup was the most suitable injectable anesthetic combination used. Recovery was shortened by IM administration of atipamezole. There were minimal adverse effects in all groups.

Restricted access
in Journal of the American Veterinary Medical Association