Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: Steven C. Budsberg x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To describe changes in vertical ground reaction forces (GRF) over 48 months in dogs with osteoarthritis (OA) of the stifle joint induced by transection of a cranial cruciate ligament (CCL).

Animals—12 clinically normal adult dogs.

Procedure—Vertical GRF (eg, peak force and impulse) were determined prior to and 1, 2, 3, 6, 10, and 12 months after transection of the right CCL. In 7 dogs, data were also collected 24, 32, 38, 42, and 48 months after transection.

Results—Vertical peak force and impulse were significantly decreased in the right hind limb at all times after transection, compared with baseline values. From 10 through 48 months after transection, vertical GRF remained essentially static. Ground reaction forces in the unoperated (left) hind limb also changed significantly during the study. Left vertical impulse significantly increased 3 months after transection, whereas at 24, 38, 42, and 48 months after transection, left vertical peak force was significantly decreased, compared with the baseline value .Mean intradog coefficients of variation (CV) for peak vertical force and impulse ranged from 7.38 and 9.32, respectively, 1 month after transection to 1.96 and 2.76, respectively, at 42 months.

Conclusions and Clinical Relevance—Vertical GRF in the affected hind limb equilibrated approximately 10 months after CCL transection. Prior to this, force transmission across the affected stifle joint changed significantly over time. Intradog CV were small, indicating that GRF may be an appropriate outcome measurement for evaluation of OA development induced by CCL transection in dogs. (Am J Vet Res 2001;62:1207–1211)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To develop a 3-D kinematic model to measure truncal motion in dogs and assess changes in truncal motion in dogs when wearing each of 2 service vests.

ANIMALS

5 adult mixed-breed dogs.

PROCEDURES

27 reflective markers were placed on the pelvis, trunk, and scapula of each dog. Six infrared cameras were placed around a treadmill to track the location of the markers within a calibrated space. Dogs were recorded during walking and trotting on the treadmill. Local and global coordinate systems were established, and a segmental rigid-body model of the trunk was created. Dogs were then recorded while wearing a custom vest and an adjustable vest during walking and trotting on the treadmill. Range of motion of the trunk when dogs were and were not wearing vests was compared by repeated-measures ANOVA.

RESULTS

An anatomic coordinate system was established by use of markers located at T1, T13, and the xiphoid process. Range of motion of the trunk during a gait cycle did not differ significantly regardless of the day of the test for both walking and trotting gaits. Trunk motion of dogs when walking and trotting was significantly reduced when dogs were wearing a vest, compared with trunk motion when not wearing a vest.

CONCLUSIONS AND CLINICAL RELEVANCE

A 3-D kinematic model for measuring truncal rotation was developed. Results indicated measurable differences in the gait of dogs when wearing each of the 2 service vests, compared with the gait when not wearing a vest.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association

Abstract

Objective—To identify and critically evaluate the quality of evidence of the most commonly used pharmacologic, nutraceutical, and purported slow-acting drugs of osteoarthritis for the management of osteoarthritis in dogs by use of the FDA's evidence-based medicine scoring system.

Design—Systematic review.

Sample Population—16 clinical trials.

Procedures—A broad bibliographic search was performed prior to May 2006. Inclusion criteria focused on prospective trials evaluating commonly used medical treatment interventions for the management of osteoarthritis in dogs and published in peer-reviewed journals. The analysis consisted of the following: study design rating, quality factor rating, quantity rating, consistency rating, relevance to disease risk reduction rating, and cumulative strength of evidence ranking.

Results—4 trials evaluating meloxicam were rated as type I.Three trials evaluating carprofen were rated as type I, and 2 trials were rated as type III. One trial evaluating each of the following agents was rated as type 1: etodolac; P54FP; polysulfated glycosaminoglycan; and a combination of chondroitin sulfate, glucosamine hydrochloride, and manganese ascorbate. Two trials evaluating pentosan polysulphate and 2 trails evaluating green-lipped mussels were rated as type I. One trial evaluating hyaluronan was rated as type III.

Conclusions and Clinical Relevance—A high level of comfort exists for meloxicam that the claimed relationship is scientifically valid and that its use is clinically efficacious for the treatment of osteoarthritis in dogs.A moderate level of comfort exists for carprofen; etodolac; pentosan polysulphate; green-lipped mussels; P54FP; polysulfated glycosaminoglycans; and a combination of chondroitin sulfate, glucosamine hydrochloride, and manganese ascorbate. An extremely low level of comfort exists for hyaluronan.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate a 3-D kinematic model of the hind limb developed by use of a joint coordinate system in dogs.

Animals—6 clinically normal adult mixed-breed dogs.

Procedures—17 retroreflective markers were affixed to the skin on the right hind limb of each dog. Eight infrared cameras were arranged around a gait platform to record marker locations as dogs were recorded moving through the calibrated space 5 times during a walk and trot at velocities of 0.9 to 1.2 m/s and 1.7 to 2.1 m/s, respectively. Local and global coordinate systems were established, and a segmental rigid-body model of the canine hind limb was produced. Dynamic 3-D joint kinematic measurements were collected for the hip, stifle, and tarsal joints.

Results—Sagittal (flexion-extension), transverse (internal-external rotation), and frontal (abduction-adduction) plane kinematic measurements were acquired during each trial for the hip, stifle, and tarsal joints.

Conclusions and Clinical Relevance—The joint coordinate system allowed acquisition of 3-D kinematic measurements of the hip, stifle, and tarsal joints of the canine hind limb. Methods were described to model 3-D joint motion of the canine hind limb. (Am J Vet Res 2010;71:1118-1122)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare results of single-point kinetic gait analysis (peak and impulse) with those of complete gait waveform analysis.

Animals—15 healthy adult mixed-breed dogs.

Procedures—Dogs were trotted across 2 force platforms (velocity, 1.7 to 2.1 m/s; acceleration and deceleration, 0.5 m/s2). Five valid trials were recorded on each testing day. Testing days 1 and 2 were separated by 1 week, as were days 3 and 4. Testing days 1 and 2 were separated from days 3 and 4 by 1 year. A paired t test was performed to evaluate interday and interyear differences for vertical and craniocaudal propulsion peak forces and impulses. Vertical and craniocaudal propulsion force-time waveforms were similarly compared by use of generalized indicator function analysis (GIFA).

Results—Vertical and craniocaudal propulsion peak forces and impulses did not differ significantly between days 1 and 2 or days 3 and 4. When data were compared between years, no significant differences were found for vertical impulse and craniocaudal propulsion peak force and impulse, but differences were detected for vertical peak force. The GIFA of the vertical and craniocaudal force-time waveforms identified significant interday and interyear differences. These results were identical for both hind limbs.

Conclusions and Clinical Relevance—Findings indicated that when comparing kinetic data overtime, additional insight may be gleaned from GIFA of the complete waveform, particularly when subtle waveform differences are present.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate in vivo activity of carprofen, deracoxib, and etodolac on prostanoid production in several target tissues in dogs with chronic osteoarthritis.

Animals—8 dogs with chronic unilateral osteoarthritis of the stifle joint.

Procedure—Each dog received carprofen, deracoxib, or etodolac for 10 days with a 30- to 60-day washout period between treatments. On days 0, 3, and 10, prostaglandin (PG) E2 concentrations were measured in lipopolysaccharide-stimulated blood, synovial fluid, and gastric mucosal biopsy specimens; PGE1 concentrations were measured in gastric mucosal biopsy specimens; and thromboxane B2 (TXB2) was evaluated in blood.

Results—Carprofen and deracoxib significantly suppressed PGE2 concentrations in blood at days 3 and 10, compared with baseline, whereas etodolac did not. None of the drugs significantly suppressed TXB2 concentrations in blood or gastric PGE1 synthesis at any time point. All 3 drugs significantly decreased gastric synthesis of PGE2 at day 3 but not day 10 of each treatment period. All 3 drugs decreased synovial fluid PGE2 concentrations in the affected and unaffected stifle joints at days 3 and 10.

Conclusions and Clinical Relevance—Results indicate that carprofen and deracoxib act in vivo on target tissues as COX-1–sparing drugs by sparing gastric PGE1 and PGE2 synthesis and production of TXB2 by platelets. Etodolac also appears to be COX-1 sparing but may have variable effects on COX-2 depending on the tissue. In gastric mucosa and synovial fluid, there were no significant differences in PG production between compounds at recommended concentrations. (Am J Vet Res 2005;66:812–817)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate cyclooxygenase (COX) selectivity of several nonsteroidal anti-inflammatory drugs (NSAID) in canine blood in vitro.

Animals—11 healthy adult male hound crosses.

Procedure—9 NSAID were studied at 5 concentrations. Thromboxane B2 (TxB2) was assayed as a measure of COX-1 activity in clotted blood. Prostaglandin E2 (PGE2) was assayed as a measure of COX-2 activity in heparinized, lipopolysaccharide (LPS)-stimulated blood. All assays were competitive ELISA tests. Cyclooxygenase selectivity was expressed as a ratio of the concentration of an NSAID that inhibited 50% of the activity (IC50) of COX-1 to the IC50 of COX-2. A separate ratio of the concentration that inhibited 80% of COX activity (IC80) was also determined. A ratio of < 1.0 indicated selectivity for COX-1, whereas a ratio of > 1.0 indicated COX-2 selectivity.

Results—Ketoprofen, aspirin, and etodolac were COX-1 selective. Piroxicam, meloxicam, and carprofen had COX-2 selectivity. The IC50 and IC80 values were similar for most NSAID.

Conclusion and Clinical Relevance—This methodology provides repeatable data from individual dogs and is comparable to results of previous in vitro and ex vivo models. Findings are also consistent with those of canine studies performed in vivo, suggesting that this is a viable in vitro assessment of the COX selectivity of NSAID in dogs. (Am J Vet Res 2002;63:91–94)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate in vivo effects of tepoxalin, an inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX), on prostaglandin (PG) and leukotriene production in osteoarthritic dogs.

Animals—7 mixed-breed adult dogs with chronic unilateral arthritis of a stifle joint.

Procedure—Dogs were treated in accordance with a randomized 3-way crossover design. Each dog received an inert substance, meloxicam, or tepoxalin for 10 days. On day 0 (baseline), 3, and 10, dogs were anesthetized and samples of blood, stifle joint synovial fluid, and gastric mucosa were collected. Concentrations of PGE2 were measured in synovial fluid and after lipopolysaccharide stimulation of whole blood; PGE1 and PGE2 synthesis was measured in gastric mucosa. Thromboxane B2 (TxB2) concentration was measured in whole blood. Leukotriene B4 (LTB4) concentration was determined in gastric mucosa and in whole blood after ex vivo stimulation with a calcium ionophore.

Results—Tepoxalin significantly decreased LTB4 concentrations in the blood and gastric mucosa at day 10 and TxB2 concentrations in the blood and PGE2 in the gastric mucosa and synovial fluid at days 3 and 10, compared with baseline values. Meloxicam significantly decreased PGE2 concentrations in the blood at days 3 and 10 and synovial fluid at day 3. Meloxicam also decreased PGE1 and PGE2 synthesis in the gastric mucosa at day 3. Meloxicam did not affect LTB4 synthesis in the blood or LTB4 concentrations in the gastric mucosa.

Conclusions and Clinical Relevance—Tepoxalin has in vivo inhibitory activity against COX-1, COX-2, and 5-LOX in dogs at the current approved recommended dosage. (Am J Vet Res 2005;66:966–972)

Full access
in American Journal of Veterinary Research