Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Silvia Tasca x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the use of EDTA tubes for collection of blood samples for assays of secondary hemostasis in dogs.

Animals—108 dogs of various ages, breeds, and sexes (19 healthy and 89 with abnormalities of secondary hemostasis).

Procedures—Blood samples were collected via cephalic venipuncture and transferred to sodium citrate tubes and EDTA tubes. Plasma was harvested from each type of tube for assays of concentrations of fibrinogen and D-dimer as well as prothrombin time, activated partial thromboplastin time, and antithrombin activity. Intra-assay and interassay precision and correlation coefficients for all hemostatic tests were calculated for each type of plasma sample. The effect of storage conditions on assay results for the 2 types of plasma samples was also evaluated.

Results—Results of hemostatic tests were highly correlated between citrated and EDTA-treated plasma samples. Intra-assay imprecision for all hemostatic tests with the exception of D-dimer concentration was < 10% for both citrated and EDTA-treated plasma samples; interassay imprecision was higher for EDTA-treated versus citrated plasma samples. Storage of plasma samples for 1 hour did not result in significantly different assay results for either type of plasma sample, but storage for 2 hours significantly affected values for EDTA-treated plasma samples.

Conclusions and Clinical Relevance—Although evaluation of the sensitivity and specificity of hemostatic tests that use EDTA-treated plasma samples is required, EDTA may be a suitable alternative to sodium citrate as an anticoagulant for use in hemostatic testing in conditions in which tests could be performed within 1 hour after sample collection.

Full access
in American Journal of Veterinary Research


Objective—To evaluate and validate 3 spectrophotometric assays for measuring serum activity of paraoxonase type-1 (PON1), an enzyme associated with high-density lipoproteins, in dogs.

Animals—22 healthy adult dogs and 10 dogs with eccentrocytosis.

Procedures—2 methods were adapted for use in 96-well microplates with phenyl acetate and 5-thiobutyl butyrolactonase as substrates, and 1 was adapted for use in an automated analyzer with p-nitrophenyl acetate as substrate. Blood samples were collected from all dogs, serum was harvested, and serum PON1 activity was measured with each method.

Results—Imprecision was low for all 3 methods, with the exception of interassay imprecision for 5-thiobutyl butyrolactonase, and results were linear across serial sample dilutions. The 3 methods were able to detect low PON1 activity when EDTA was used for blood sample collection, yielded lower PON1 values in sick dogs with eccentrocytosis than in healthy dogs, and yielded highly correlated results.

Conclusions and Clinical Relevance—The methods described here may allow a wider use of PON1 activity as a biomarker of oxidative stress in dogs in clinical and research settings. Results of each method were robust and precise (with the exception of the interassay values for the lactonase method), and the methods were easy to set up in a laboratory.

Full access
in American Journal of Veterinary Research