Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Sherry Cox x
- Pharmacology x
- Refine by Access: All Content x
Abstract
OBJECTIVE
To determine an optimal ceftazidime dosing strategy in Northern leopard frogs (Lithobates pipiens) by evaluation of 2 different doses administered SC and 1 dose administered transcutaneously.
ANIMALS
44 Northern leopard frogs (including 10 that were replaced).
PROCEDURES
Ceftazidime was administered to frogs SC in a forelimb at 20 mg/kg (n = 10; SC20 group) and 40 mg/kg (10; SC40 group) or transcutaneously on the cranial dorsum at 20 mg/kg (10; TC20 group). Two frogs in each ceftazidime group were euthanized 12, 24, 48, 72, and 96 hours after drug administration. Plasma, renal, and skin concentrations of ceftazidime were measured by means of reversed-phase high-performance liquid chromatography. Four control frogs were used for assay validation.
RESULTS
Mean plasma half-life of ceftazidime in the SC20, SC40, and TC20 groups was 9.01 hours, 14.49 hours, and too low to determine, respectively. Mean maximum plasma ceftazidime concentration was 92.9, 96.0, and 1.3 μg/mL, respectively. For 24 hours after drug administration in the SC20 and SC40 groups, plasma ceftazidime concentration exceeded 8 μg/mL. Renal and skin concentrations were detectable at both doses and routes of administration; however, skin concentrations were significantly lower than renal and plasma concentrations.
CONCLUSIONS AND CLINICAL RELEVANCE
Findings indicated that ceftazidime administration to Northern leopard frogs at 20 mg/kg, SC, every 24 hours would achieve a plasma concentration exceeding the value considered effective against common amphibian pathogens. Transcutaneous administration of the injectable ceftazidime formulation at 20 mg/kg warrants further investigation but is not currently recommended because of a potential lack of efficacy.
Abstract
Objective—To evaluate the elimination pharmacokinetics of a single IM injection of a long-acting ceftiofur preparation (ceftiofur crystalline-free acid [CCFA]) in healthy adult helmeted guineafowl (Numida meleagris).
Animals—14 healthy adult guineafowl.
Procedures—1 dose of CCFA (10 mg/kg) was administered IM to each of the guineafowl. Blood samples were collected intermittently via jugular venipuncture over a 144-hour period. Concentrations of ceftiofur and all desfuroylceftiofur metabolites were measured in plasma via high-performance liquid chromatography.
Results—No adverse effects of drug administration or blood collection were observed in any bird. The minimal inhibitory concentration (MIC) for many bacterial pathogens of poultry and domestic ducks (1 μg/mL) was achieved by 1 hour after administration in most birds and by 2 hours in all birds. A maximum plasma concentration of 5.26 μg/mL was reached 19.3 hours after administration. Plasma concentrations remained higher than the MIC for at least 56 hours in all birds and for at least 72 hours in all but 2 birds. The harmonic mean ± pseudo-SD terminal half-life of ceftiofur was 29.0 ± 4.93 hours. The mean area under the curve was 306 ± 69.3 μg•h/mL, with a mean residence time of 52.0 ± 8.43 hours.
Conclusions and Clinical Relevance—A dosage of 10 mg of CCFA/kg, IM, every 72 hours in helmeted guineafowl should provide a sufficient plasma drug concentration to inhibit growth of bacteria with an MIC ≤ 1 μg/mL. Clinical use should ideally be based on bacterial culture and antimicrobial susceptibility data and awareness that use of CCFA in avian patients constitutes extralabel use of this product.
Abstract
OBJECTIVE
To identify the antifungal susceptibility of Nanniziopsis guarroi isolates and to evaluate the single-dose pharmacokinetics of orally administered terbinafine in bearded dragons.
ANIMALS
8 healthy adult bearded dragons.
PROCEDURES
4 isolates of N guarroi were tested for antifungal susceptibility. A compounded oral solution of terbinafine (25 mg/mL [20 mg/kg]) was given before blood (0.2 mL) was drawn from the ventral tail vein at 0, 4, 8, 12, 24, 48, 72, and 96 hours after administration. Plasma terbinafine concentrations were measured with high-performance liquid chromatography.
RESULTS
The antifungal minimum inhibitory concentrations against N guarroi isolates ranged from 4,000 to > 64,000 ng/mL for fluconazole, 125 to 2,000 ng/mL for itraconazole, 125 to 2,000 ng/mL for ketoconazole, 125 to 1,000 ng/mL for posaconazole, 60 to 250 ng/mL for voriconazole, and 15 to 30 ng/mL for terbinafine. The mean ± SD peak plasma terbinafine concentration in bearded dragons was 435 ± 338 ng/mL at 13 ± 4.66 hours after administration. Plasma concentrations remained > 30 ng/mL for > 24 hours in all bearded dragons and for > 48 hours in 6 of 8 bearded dragons. Mean ± SD terminal half-life following oral administration was 21.2 ± 12.40 hours.
CLINICAL RELEVANCE
Antifungal susceptibility data are available for use in clinical decision making. Results indicated that administration of terbinafine (20 mg/kg, PO, q 24 to 48 h) in bearded dragons may be appropriate for the treatment of dermatomycoses caused by N guarroi. Clinical studies are needed to determine the efficacy of such treatment.
Abstract
OBJECTIVE To determine the pharmacokinetics of meloxicam in domestic hens and duration and quantity of drug residues in their eggs following PO administration of a single dose (1 mg of meloxicam/kg).
ANIMALS 8 healthy adult White Leghorn hens.
PROCEDURES Hens were administered 1 mg of meloxicam/kg PO once. A blood sample was collected immediately before and at intervals up to 48 hours after drug administration. The hens' eggs were collected for 3 weeks after drug administration. Samples of the hens' plasma, egg whites (albumen), and egg yolks were analyzed by high-performance liquid chromatography.
RESULTS The half-life, maximum concentration, and time to maximum concentration of meloxicam in plasma samples were 2.8 hours, 7.21 μg/mL, and 2 hours, respectively. Following meloxicam administration, the drug was not detected after 4 days in egg whites and after 8 days in egg yolks.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that meloxicam administered at a dose of 1 mg/kg PO in chickens appears to maintain plasma concentrations equivalent to those reported to be therapeutic for humans for 12 hours. The egg residue data may be used to aid establishment of appropriate drug withdrawal time recommendations.