Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sarah E. Wilson x
  • Refine by Access: All Content x
Clear All Modify Search



To characterize the pharmacokinetics of a single oral dose (6 mg/kg) of mavacoxib in New Zealand White rabbits (Oryctolagus cuniculus) and to characterize any clinicopathologic effects with this medication and dose.


Six healthy, 4-month-old New Zealand White rabbits (3 male, 3 female).


Before drug administration, clinicopathologic samples were collected for baseline data (CBC, serum biochemical analyses, and urinalysis including urine protein-to-creatinine ratio). All 6 rabbits received a single oral dose (6 mg/kg) of mavacoxib. Clinicopathologic samples were collected at set time intervals to compare with the baseline. Plasma mavacoxib concentrations were determined using liquid chromatography with mass spectrometry, and pharmacokinetic analysis was performed using non-compartmental methods.


After a single oral dose, the maximum plasma concentration (Cmax; mean, range) was 854 (713–1040) ng/mL, the time to Cmax (tmax) was 0.36 (0.17–0.50) days, the area under the curve from 0 to the last measured time point (AUC0-last) was 2000 (1765–2307) days*ng/mL, the terminal half-life (t1/2) was 1.63 (1.30–2.26) days, and the terminal rate constant (λz) was 0.42 (0.31–0.53) days. All results for CBCs, serum biochemical analyses, urinalyses, and urine protein-to-creatinine ratios remained within published normal reference intervals.


This study determined that plasma concentrations reached target levels of 400 ng/mL for 48 hours in 3/6 rabbits at 6 mg/kg PO. In the remaining 3/6 rabbits, the plasma concentrations were 343–389 ng/mL at 48 hours, which is below the target concentration. Further research is needed to make a dosing recommendation, including a pharmacodynamic study and investigating pharmacokinetics at different doses and multiple doses.

Open access
in American Journal of Veterinary Research



To determine the presentation, diagnosis, progression, and family risk of fibrotic myopathy, a disease with marked breed predisposition in the German Shepherd Dog (GSD).


41 dogs prospectively recruited to the University of Wisconsin-Madison Comparative Genetics and Orthopedic Laboratory between November 2019 to August 2022.


Medical records of dogs diagnosed with fibrotic myopathy were reviewed upon referral. The following data were recorded: sex, age, weight, regio interscapularis (withers) height, date of neutering, coat color and length, and age at fibrotic myopathy diagnosis. A pedigree was also obtained.


In the study population, breeds included 37 GSDs, a Belgian Malinois, a Belgian Malinois cross, and 2 dogs with a GSD phenotype and no pedigree. Mean age at fibrotic myopathy diagnosis was 5.9 ± 2.0 years, and duration of lameness before diagnosis was 5.6 months and ranged from 0.75 to 18 months. Males were overrepresented at 61% of the study population. Inherited familial risk for fibrotic myopathy in the GSD was supported by pedigree analysis.


This was the largest case series of fibrotic myopathy to date, providing a more comprehensive look at presentation and progression of the disease. The longer duration of lameness in bilaterally affected dogs likely represents disease progression rather than a more severe phenotype. Family history data support a genetic contribution to fibrotic myopathy, suggesting that further genetic investigation is warranted.

Full access
in Journal of the American Veterinary Medical Association