Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Roberta J. Magnuson x
- Refine by Access: All Content x
Abstract
Objective—To determine the adsorptive capability of di-tri-octahedral smectite (DTOS) on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies.
Sample Population—3 C perfringens exotoxins and 9 colostral samples.
Procedures—Alpha, beta, and beta-2 exotoxins were individually co-incubated with serial dilutions of DTOS or bismuth subsalicylate, and the amount of toxin remaining after incubation was determined via toxin-specific ELISAs. Colostral samples from healthy mares were individually co-incubated with serial dilutions of DTOS, and colostral IgG concentrations were determined via single radial immunodiffusion assay.
Results—Di-tri-octahedral smectite decreased the amount of each C perfringens exotoxin in co-incubated samples in a dose-dependent manner and was more effective than bismuth subsalicylate at reducing exotoxins in vitro. Decreases in the concentration of IgG were detected in samples of colostrum that were combined with DTOS at 1:4 through 1:16 dilutions, whereas no significant decrease was evident with DTOS at the 1:32 dilution.
Conclusions and Clinical Relevance—Di-tri-octahedral smectite effectively adsorbed C perfringens exotoxins in vitro and had a dose-dependent effect on the availability of equine colostral antibodies. Results suggested that DTOS may be an appropriate adjunctive treatment in the management of neonatal clostridiosis in horses. In vivo studies are necessary to fully assess the clinical efficacy of DTOS treatment.
Abstract
Objective—To determine the percentage of broodmares and foals that shed Clostridium perfringens in their feces and classify the genotypes of those isolates.
Design—Prospective cross-sectional study.
Animals—128 broodmares and their foals on 6 equine premises.
Procedures—Anaerobic and aerobic bacteriologic cultures were performed on feces collected 3 times from broodmares and foals. All isolates of C perfringens were genotyped.
Results—Clostridium perfringens was isolated from the feces of 90% of 3-day-old foals and 64% of foals at 8 to 12 hours of age. A lower percentage of broodmares and 1- to 2-month-old foals shed C perfringens in their feces, compared with neonatal foals. Among samples with positive results, C perfringens type A was the most common genotype identified (85%); C perfringens type A with the β2 toxin gene was identified in 12% of samples, C perfringens type A with the enterotoxin gene was identified in 2.1% of samples, and C perfringens type C was identified in < 1% of samples.
Conclusions and Clinical Relevance—Clostridium perfringens was identified from the feces of all but 6 foals by 3 days of age and is likely part of the normal microflora of neonatal foals. Most isolates from broodmares and foals are C perfringens type A; thus, the clinical relevance of culture results alone is questionable. Clostridium perfringens type C, which has been associated with neonatal enterocolitis, is rarely found in the feces of horses. (J Am Vet Med Assoc 2002;220:342–348)