Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mark Morton x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate the tensile strength, elongation, and degradation of 4 monofilament absorbable suture materials that undergo degradation by hydrolysis in specimens of canine urine with various physical characteristics.

Sample Population—4 monofilament absorbable sutures (polydioxanone, poliglecaprone 25, polyglyconate, and glycomer 631).

Procedure—Voided urine was collected from 6 healthy dogs, pooled, filter-sterilized, and prepared to provide 5 media: sterile neutral (pH, 7.0), sterile acidic (pH, 6.2), sterile basic (pH, 8.8), Escherichia coli-inoculated, and Proteus mirabilis-inoculated urine. Ten strands of each suture material were immersed in each of the media for 0 to 28 days. Tensile strength and elongation of each suture material were evaluated by use of a texture analyzer on days 0, 1, 3, 7, 10, 14, 21, and 28.

Results—Reduction in tensile strength was detected for all materials in all urine specimens over time. Polyglyconate and polydioxanone had superior tensile strengths in sterile neutral and E coli-inoculated urine, and polydioxanone retained the greatest tensile strength throughout the study period. All suture materials disintegrated before day 7 in P mirabilis-inoculated urine.

Conclusions and Clinical Relevance—Polydioxanone, polyglyconate, and glycomer 631 may be acceptable for urinary bladder closure in the presence of sterile neutral and E coli-contaminated urine. Tensile strength of poliglecaprone 25 in urine may be unacceptable by the critical healing time for bladder tissue (14 to 21 days). During bladder surgery, exposure of suture material that degrades via hydrolysis to urine containing Proteus spp should be minimized. Am J Vet Res (2004;65:847–853)

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association