Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Denis J. Marcellin-Little x
  • Bone, Joint, and Cartilage x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare and validate goniometric joint measurements obtained from nonsedated and sedated cats with measurements from radiographic evaluation.

Animals—20 adult cats with no evidence of joint disease.

Procedures—Measurements of flexion and extension of the carpus, elbow, shoulder, tarsus, stifle, and hip joints and of carpal and tarsal joints during varus and valgus angulation were made by a single investigator before and after sedation of cats. Measurements were made by use of a goniometer with a masked dial. Joint angle measurements were compared between nonsedated and sedated cats and also with measurements from radiographs made while cats were sedated. Each series of measurements was repeated 4 times. To evaluate repeatability, Cronbach α values were calculated for repeated measure results of goniometric joint measurements of nonsedated and sedated cats. An intraclass correlation was calculated to determine reliability among the 3 measurement types (ie, measurements from nonsedated and sedated cats and on radiographic evaluation).

Results—Joint measurements did not differ significantly by measurement type, when comparing radiographic measurements with goniometric measurements in sedated and nonsedated cats. Cronbach α values were > 0.99 for goniometric joint measurements within individual nonsedated and sedated cats and also for comparison of mean meaurements obtained from sedated cats versus nonsedated cats versus radiographs. An intraclass correlation of 0.999 revealed high reliability among measurement types.

Conclusions and Clinical Relevance—Results indicated that goniometric joint measurements in nonsedated and sedated cats are repeatable and valid.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To assess 3-D geometry of the humerus of dogs and determine whether the craniocaudal canal flare index (CFI) is associated with specific geometric features.

SAMPLE CT images (n = 40) and radiographs (38) for 2 groups of skeletally mature nonchondrodystrophic dogs.

PROCEDURES General dimensions (length, CFI, cortical thickness, and humeral head offset), curvature (shaft, humeral head, and glenoid cavity), version (humeral head and greater tubercle), and torsion were evaluated on CT images. Dogs were allocated into 3 groups on the basis of the craniocaudal CFI, and results were compared among these 3 groups. The CT measurements were compared with radiographic measurements obtained for another group of dogs.

RESULTS Mean ± SD humeral head version was −75.9 ± 9.6° (range, −100.7° to −59.4°). Mean mechanical lateral distal humeral angle, mechanical caudal proximal humeral angle, and mechanical cranial distal humeral angle were 89.5 ± 3.5°, 50.2 ± 4.5°, and 72.9 ± 7.8°, respectively, and did not differ from corresponding radiographic measurements. Mean humeral curvature was 20.4 ± 4.4° (range, 9.6° to 30.5°). Mean craniocaudal CFI was 1.74 ± 0.18 (range, 1.37 to 2.10). Dogs with a high craniocaudal CFI had thicker cranial and medial cortices than dogs with a low craniocaudal CFI. Increased body weight was associated with a lower craniocaudal CFI. Radiographic and CT measurements of craniocaudal CFI and curvature differed significantly.

CONCLUSIONS AND CLINICAL RELEVANCE CT-based 3-D reconstructions allowed the assessment of shaft angulation, torsion, and CFI. Radiographic and CT measurements of shaft curvature and CFI may differ.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To assess the repeatability and accuracy of polymer replicas of small, medium, and large long bones of small animals fabricated by use of 2 low-end and 2 high-end 3-D printers.

SAMPLE Polymer replicas of a cat femur, dog radius, and dog tibia were fabricated in triplicate by use of each of four 3-D printing methods.

PROCEDURES 3-D renderings of the 3 bones reconstructed from CT images were prepared, and length, width of the proximal aspect, and width of the distal aspect of each CT image were measured in triplicate. Polymer replicas were fabricated by use of a high-end system that relied on jetting of curable liquid photopolymer, a high-end system that relied on polymer extrusion, a triple-nozzle polymer extrusion low-end system, and a dual-nozzle polymer extrusion low-end system. Polymer replicas were scanned by use of a laser-based coordinate measurement machine. Length, width of the proximal aspect, and width of the distal aspect of the scans of replicas were measured and compared with measurements for the 3-D renderings.

RESULTS 129 measurements were collected for 34 replicas (fabrication of 1 large long-bone replica was unsuccessful on each of the 2 low-end printers). Replicas were highly repeatable for all 3-D printers. The 3-D printers overestimated dimensions of large replicas by approximately 1%.

CONCLUSIONS AND CLINICAL RELEVANCE Low-end and high-end 3-D printers fabricated CT-derived replicas of bones of small animals with high repeatability. Replicas were slightly larger than the original bones.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the effect of computed tomography (CT) scan protocols (radiation amounts) and fabrication methods on biomodel accuracy and variability.

Sample—Cadaveric femur of a Basset Hound.

Procedures—Retroreconstructions (n = 158) were performed of 16 original scans and were visually inspected to select 17 scans to be used for biomodel fabrication. Biomodels of the 17 scans were made in triplicate by use of 3 freeform fabrication processes (stereolithography, fused deposition modeling, and 3-D printing) for 153 models. The biomodels and original bone were measured by use of a coordinate measurement machine.

Results—Differences among fabrication methods accounted for 2% to 29% of the total observed variation in inaccuracy and differences among method-specific radiation configurations accounted for 4% to 44%. Biomodels underestimated bone length and width and femoral head diameter and overestimated cortical thickness. There was no evidence of a linear association between thresholding adjustments and biomodel accuracy. Higher measured radiation dose led to a decrease in absolute relative error for biomodel diameter and for 4 of 8 cortical thickness measurements.

Conclusions and Clinical Relevance—The outside dimensions of biomodels have a clinically acceptable accuracy. The cortical thickness of biomodels may overestimate cortical thickness. Variability among biomodels was caused by model fabrication reproducibility and, to a lesser extent, by the radiation settings of the CT scan and differences among fabrication methods.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare measurements obtained by use of a universal plastic goniometer (UG) and an electrogoniometer (EG) and from radiographs and to compare joint motion in German Shepherd Dogs and Labrador Retrievers.

Animals—12 healthy adult German Shepherd Dogs and data previously collected from 16 healthy adult Labrador Retrievers.

Procedures—German Shepherd Dogs were sedated. One investigator then measured motion of the carpal, cubital (elbow), shoulder, tarsal, stifle, and hip joints of the sedated dogs. Measurements were made in triplicate with a UG and an EG. Radiographs were taken of all joints in maximal flexion and extension. Values were compared between the UG and EG and with values previously determined for joints of 16 Labrador Retrievers.

Results—An EG had higher variability than a UG for all dogs. The EG variability appeared to result from the technique for the EG. German Shepherd Dogs had lower values in flexion and extension than did Labrador Retrievers for all joints, except the carpal joints. German Shepherd Dogs had less motion in the tarsal joints, compared with motion for the Labrador Retrievers, but had similar motion in all other joints.

Conclusions and Clinical Relevance—A UG is reliable for obtaining measurements in German Shepherd Dogs. There was higher variability for the EG than for the UG, and an EG cannot be recommended for use.

Full access
in American Journal of Veterinary Research